ENHANCED MODEL OF FOUR WAY VALVES CHARACTERISTICS AND ITS VALIDATION AT LOW TEMPERATURE
Keywords:
flow gain, hydraulic, identification, low temperature characteristics, modelling, orifice, pressure gain, servovalve, spool valveAbstract
This paper deals with the modelling of sliding spool valves that are used in hydraulic actuation systems. A new model of continuity between opened and closed orifice configurations is proposed and validated from -40 to +32 degrees Celsius. It aims at reproducing accurately the experimental pressure gain, flow gain and leakage flow for a wide range of operating temperatures in the absence of detailed knowledge of the valve design. The proposed unified model of flow at valve orifices considers the mode of operation (opened or closed orifice) and the flow conditions (laminar or turbulent) with special attention to continuity around the hydraulic null. The leakage flow in closed orifice configuration is modelled with reference to a short orifice instead of a laminar gap between infinite planes. The parameter identification and model validation processes are presented in detail and the results are displayed for an aerospace flight control servovalve.
Downloads
References
AMESim, User Manual, Thermal-Hydraulic Library,
IMAGINE Inc, Ed 4.2, September 2004
Beck, A. and Mc Cloy, H. R. 1967. Some Cavitation
Effects in Spool Valves. Proceedings of Institution
of Mechanical Engineering, 182 Part 1, n°8. London.Blackburn, J. F., Reethof. G. and Shearer, J. L.
Fluid Power Control. New York. John Wiley
& Sons.
Ellman, A., Koskinen, K. and Vilenius, M. 1995.
Through-Flow in Short Annulus of Fine Clearance.
Proceeding of the ASME Dynamic Systems and
Control Division, Vol.7, pp. 813-821. Atlanta,
USA.
Ellman, A. 1998. Leakage Behaviour of Four-Way
Servovalve. The ASME Fluid Power Systems and
Technology, Vol. 5, pp. 163-167. Anaheim, CA.
Eryilmaz, B. and Wilson, B. H. 2000. Modeling the
Internal Leakage of Hydraulic Servovalves. International
Mechanical Engineering Congress and
Exposition, ASME, Vol. DSC-69.1, pp. 337-343.
Orlando, USA.
Faisandier, J. 2006. Mécanismes Hydrauliques et
Pneumatiques. 9e ed. Paris. Dunod.
Gander, W. and Hřebíček, J. 1997. Solving Problems
in Scientific Computing Using Maple and Matlab.
Springer. 3rd Edition.
Lebrun, M. 1986. Contribution à une Aide à l'Analyse
Dynamique et à la Conception de Systèmes Electrohydrauliques.
Mémoire de Doctorat d'Etat. Université
Claude Bernard-Lyon I.
Maré, J.-C. 1993. Contribution à la Modélisation, la
Simulation, l'Identification et la Commande d'Actionneurs
Electrohydrauliques. Mémoire de Doctorat
d'Etat. Université Claude Bernard-Lyon I.
Merritt, H. E. 1967. Hydraulic Control Systems. New
York. John Wiley & Sons.
Rabie, G. and Lebrun, M. 1981. Modélisation par les
Graphes à Liens et Simulation d'une Servovalve
Electrohydraulique à Deux Etages. R.A.I.R.O Automatique
Systems Analysis and Control, Vol. 15(2),
pp. 97-129.
SAE. 2000. Aerospace Hydraulic Fluids Physical Properties.
SAE Aerospace Information Report 1362.
SAE. 1993. Electrohydraulic servovalves. Aerospace
Recommended Practices SAE-AR 490-1.
Tchouprakov, Y. 1979. Commande Hydraulique et
Automatismes Hydrauliques. Moscou. Ed. Mir.
Viersma, T. J. 1980. Analysis, Synthesis and Design of
Hydraulic Servosystems and Pipelines. Amsterdam.
Elsevier.