DESIGN OF CYLINDER DRIVES BASED ON ELECTRORHEOLOGICAL FLUIDS
Keywords:
electrorheological fluid, response time, design concept, power supply, electrorheological properties, yield stress, cylinder drives, dynamic applications, modularisation, valve designAbstract
Short response times make electrorheological fluids (ERF) particularly suitable for the control of high dynamic applications. This paper deals with the usability of these controllable fluids and furthermore with the essential components to build up electrorheological cylinder drives. Hands-on experiences are explained in order to support the design of such systems. A design concept developed at IFAS has been applied to a new cylinder drive. The concept considers a total modularisation of the drive and the electrorheological valves. This paper demonstrates the advantages of this concept when using ERF.
Downloads
References
Agrawal, A., Kulkarni, P., Viera, S. L., Naganathan,
N. G. 2001. An overview of magneto- and electrorheological
fluids and their applications in fluid
power systems, International Journal of Fluid
Power 2, No. 2, pp. 5-36
Conrad, H., Fischer, M.; Sprecher, A.F. 1990. Characterisation
of the Structure of a Model Electrorheological
Fluid Employing Stereology, Proceedings of
the 2th International Conference on ER Fluids, pp.
-81
Dörfler, H.-D. 1994. Grenzflächen- und Kolloidchemie,
VCH, Weinheim, 1994
Fees, G. 2004. Hochdynamischer elektrorheologischer
Servoantrieb für hydraulische Anlagen, Dissertation,
RWTH Aachen University, Shaker-Verlag, Aachen
Kemmtmüller, W., Kugi, A. 2004. Modeling and
Control of an Electrorheological Actuator, submitted
to Proceedings of the 6th IFAC Symposium an
Mechatronics, Sydney
Klingenberg, D.j.; Zukoski, C.F. 1990. Studies on the
Steady-Shear Behaviour of Electrorheological Suspensions,
Langmuir 6, pp. 15 – 23
Murrenhoff, H. 2001. Grundlagen der Fluidtechnik,
Script, RWTH Aachen University, Aachen
N.N. 2002, RheOil2.0 - Fluid data sheet, FLUDICON
GmbH, Darmstadt
Rech, B. 1996. Aktoren mit elektrorheologischen
Flüssigkeiten, Verlag Mainz, Aachen
Wei, K., Meng, G., Zhu, S. 2004. Fluid power control
unit using electrorheological fluids. International
Journal of Fluid Power 5, No. 3, pp. 49-54
Wen, W., Huang, X., Yang, S., Lu, K., Sheng, P.
The Giant Electrorheological Effect in Suspensions
of Nanoparticles, Nature Materials,
Vol. 2, pp. 727-730
Wolff-Jesse, C. and Fees, G. 1998. Examination of
flow behaviour of electrorheological fluids in the
flow mode, Proceedings of the Institute of Mechanical
Engineers, Journal of Systems and Control
Engineering, Vol 212, pp. 159-173
Zaun, M. 2004a: Measurement and Simulation of Electrorheological
Valves, O+P Zeitschrift für die Fluidtechnik,
Vol. 48, Nr. 7, pp. 445-449
Zaun, M. 2004b. Trends in Electrorheological Valve
Development, Proceedings of the 4th International
Fluidpower Conference in Dresden, Vol. 2, pp.
-544.
Zaun, M. 2004c. Design Concept for the development
of cylinder drives based on electrorheological fluids,
submitted to the Proceedings of the 9th Conference
on ER-fluids and MR-Suspensions, Beijing