MODELLING AND CONTROL OF PNEUMATIC VANE MOTORS

Authors

  • Peter Beater Department of Mechanical Engineering - Automation, University of Applied Sciences Südwestfalen, Lübecker Ring 2, D 59494 Soest, Germany

Keywords:

reversible pneumatic vane motor, mathematical model, Modelica, PneuLib, PI control, speed control

Abstract

There is a broad area of applications where pneumatic vane motors offer unique advantages: high power-to-weight ratio, indifference to overload and stall, cool operation, indifference to dirty or explosive atmospheres. Typically, they are chosen from manufacturers’ diagrams such that the torque needed is provided by the motor at the required speed. If necessary, a nozzle is used to reduce speed. Some guidelines have been published about how to design these motors and how to use them in a position control loop, e.g. for robotic applications. This study derives a mathematical model suited to time-domain simulation of the motor, both in an open-loop or closed-loop system. Using geometrical data and the theory of thermodynamic processes the model of an ideal motor is given. In a second step leakage paths and friction are added to describe the behaviour of real motors. This model is implemented in the modelling language Modelica with the help of the domain library PneuLib and used to estimate values for the conductance of the nozzles or the friction terms. Comparisons between the model and measurements are given, both for open-loop and closed-loop operation.

Downloads

Download data is not yet available.

Author Biography

Peter Beater, Department of Mechanical Engineering - Automation, University of Applied Sciences Südwestfalen, Lübecker Ring 2, D 59494 Soest, Germany

Peter Beater Dr. Peter Beater is professor at the department of mechanical engineering - automation of the University of Applied Sciences Südwestfalen in Soest, Germany. He obtained his diploma degree (Dipl.-Ing.) from the Technische Universität Braunschweig, Germany, in 1985 and his doctoral degree (Dr.-Ing.) from the Ger-hard-Mercator - Universität Duisburg, Germany, in 1987. His research interests are in modelling, simulation and control of fluid power drives. He is a personal member of the Modelica Asscociation, Linköping, Sweden, and of the International Editorial Board of this journal.

References

anon. 1985. Druckluftmotoren laufen trocken. VDI

Nachrichten, No. 19, 10 Mai 1985, p. 38.

Barber, A. 1997. Pneumatic Handbook. Elsevier

Science Ltd., Oxford, UK.

Barth, H. G. 1978. Druckluft-Drehkolbenmotore -

Analyse und Berechnung. Habilitation TH

Clausthal, Germany.

Barth, H. J. 1979. Drehmoment-Verluste durch Einund

Auslaßdrosselung an Druckluft-Lamellen

Motoren. Ölhydraulik und Pneumatik 23, pp. 697 –

Beater, P. 1999. Entwurf hydraulischer Maschinen.

Springer, Berlin Heidelberg New York.

Brückner, W. 1967. Die Hauptabmessungen

nichtumsteuerbarer Druckluft-Lamellenmotoren mit

radialer Lamellenanordnung für niedrigen

spezifischen Luftverbrauch. Doctoral thesis,

Bergakademie Freiberg, Germany.

Daser, E. 1969. Das Reaktionsmoment hochtouriger

Lamellenmotoren, seine Messung und Bedeutung

für die Auslegung der Motoren. Doctoral thesis, TU

Clausthal, Germany.

Dynasim 2003, www.Dynasim.se.

Gerts, E. V. and Gerts, M. E., 1999. Selection of the

Parameters of a Reversible Pneumatic Actuator.

Journal of Machinery Manufacture and Reliability,

Vol. 6, pp. 1 – 6.

Hansson, C. 1975. Rotary air motors. In Atlas Copco

Air Compendium. Atlas Copco AB, Stockholm,

Sweden.Henze, R. 2002. Betriebseigenschaften und Regelbarkeit

pneumatischer Lamellenmotore. Diploma

thesis, FH Südwestfalen, Abt. Soest, Germany,

unpublished.

Ioannidis, I. 1987. Servopneumatische Drehantriebe

für Lageregelungen. Doctoral thesis, RWTH

Aachen, Aachen, Germany.

Ivantysyn, J. and Ivantysynova, M. 2001. Hydrostatic

pumps and motors. Akademia Books Int., New

Delhi.

Jacazio, G., Piombo, B., Romiti, A. and Sola, A.

The optimization of the performance of vanetype

air motors. Proceedings to the Fifth World

Congress on Theory of Machines and Mechanisms,

Montreal, 1979, Vol. 5, pp. 607 – 609.

Manuello Bertetto, A., Mazza, L., Pastorelli, S. and

Raparelli, T. 2002. A model of contact forces in

pneumatic motor vanes. Meccanica, Vol 36, pp.

– 700.

Modelica 2003. www.modelica.org.

ModelicaLibraries 2003

http://www.modelica.org/libraries.shtml

The model is also included in the demo version of

the tool Dymola (Dynasim, 2003).

Noritsugu, T. 1987. Electro-pneumatic feedback speed

control of a pneumatic motor: Part I. With an

electro-pneumatic proportional valve. The Journal

of Fluid Control, Vol. 17, pp. 17 – 37.

Pandian, S. R., Leda, K., Kamoyama, Y. and

Kawamura, S. 1998. Modelling and control of a

pneumatic rotary actuator. Proc. Int. Workshop on

Power Transmission and Motion Control (PTMC

‘98), Bath, England, 1998, pp. 363 – 377.

Pandian, S. R., Takemura, F., Hayakawa, Y. and

Kawamura, S. 1999. Control Performance of an

Air Motor - Can Air Motors Replace Electric

Motors? Proc. of the 1999 IEEE International

Conference on Robotics & Automation, Detroit,

Michigan, May 1999, pp. 518 – 524.

Pneulib, 2003. www.PneuLib.com

Pu, J., Wong, C. B. and Moore, P. R. 1995. An

Investigation into the Profile Following Capability

of Servo-Controlled Air Motors. 4th Scandinavian

International Conference on Fluid Power, Tampere,

Finland, pp. 545 – 555.

Sbahi, A. 1992. Druckluft-Lamellenmotor. Doctoral

thesis, TH Zwickau, Germany.

Schneider, E. 1994. Optimierung pneumatisch

angetriebener Schraubwerkzeuge. Doctoral thesis,

RWTH Aachen, Aachen, Germany.

Scholz, D. and Schabbel, U. 1987. Regelungskonzept

für Bahnsteuerungen mit Druckluft-Lamellenmotoren.

Ölhydraulik und Pneumatik 31, No. 9,. pp.

– 692.

Teichmann, O. E. 1957. Analysis and design of air

motors. Product Engineering. Vol. 28, No. 2, pp.

– 178.

Tokhi, M. O., Al-Miskiry, M. and Brisland, M. 2001.

Real-time control of air motors using a pneumatic

H-bridge. Control Engineering Practice 9, pp. 449

– 457.

Wünsch, D. and Mousa, M. 1987. Verschleißverhalten

von schmierungsfrei betriebenen Druckluft-

Lamellen-Motoren. Antriebstechnik, Vol. 26, No. 2,

pp. 47 – 50.

Downloads

Published

2004-03-01

How to Cite

Beater, P. (2004). MODELLING AND CONTROL OF PNEUMATIC VANE MOTORS. International Journal of Fluid Power, 5(1), 7–16. Retrieved from https://journals.riverpublishers.com/index.php/IJFP/article/view/590

Issue

Section

Original Article