IMPROVING GAS DYNAMIC MODELS FOR PNEUMATIC SYSTEMS
Keywords:
pneumatics, gas compression process, compressible fluid-flow, polytrophic index, simulationAbstract
The present paper deals with the improvement to modelling of pneumatic systems. The thermal air process inside the pneumatic chambers is modelled without using the polytrophic exponent to relate the pressure-density relationship. The model takes into account the real gases behaviour and the thermal constant time for estimating heat transfer. The polytrophic exponent is used only for adjusting the data and to improve the understanding of the system. The validity of this method is demonstrated by experiments.
Downloads
References
Andersen, B. 1967. The analysis and Design of Pneumatic
Systems. John Wiley and Sons. NY.
Arp, V. 1975. Thermodynamics of Single-Phase One-
Dimensional Fluid Flow. Cryogenics, May, pp 285-
Brun, X., Belgharbi, M., Sesmat, S., Thomasset. D.
and Scavarda, S. 1999. Control of an Electropneumatic
Actuator: Comparison Between Some Linear
and Non-linear Control Laws. Proc. ImechE, Part I,
Vol. 213, pp. 387-406.
de las Heras, S. 1997. Optimización de Suspensiones
Hidroneumáticas con Amortiguador Integrado.
Ph.D. thesis, UPC, Terrassa.
de las Heras, S. 2001. A New Experimental Algorithm
for the Evaluation of the True Sonic Conductance
of Pneumatic Components Using the Characteristic
Unloading Time. International Journal of Fluid
Power, Vol. 2, No.1, pp. 17-24.
Deckker, Chang 1968. Transient Effects in the Discharge
of Compressed Air From a Cylinder
Through an Orifice. Transactions of the ASME,
Journal of Basic Engineering, pp. 333-342.
Haessig, D. A. Jr. and Friedland, B. 1991. On the
Modeling and Simulation of Friction. Transactions
of the ASME, Journal of Dynamic Systems, Measurement
and Control, Vol. 113, pp. 354-362.
Ikeo, S., Zhang, H., Takahashi, K. and Sakurai, Y.
Simulation of Pneumatic Systems using
BGSP (Bond Graph Simulation Program). 5th Bath
International Workshop in Circuit, Components and
System Design.
International Standard ISO 6358. 1989. Pneumatic
Fluid Power-Components Using Compressible Fluids.
Determination of Flow-Rate Characteristics.
Kagawa, T. and Ohligschläger, O. 1990. Simulationsmodell
für Pneumatische Zylinderantriebe. Ölhydraulik
und Pneumatik, Vol. 34. pp. 115-120.
Karnopp, D. 1985. Computer Simulation of Stick-Slip
Friction in Mechanical Dynamic Systems. Transactions
of the ASME, Journal of Dynamic Systems,
Measurement and Control, Vol. 107, pp. 100-103.
Maré, J-C., Geider, O. and Colin, S. 2000. An Improved
Dynamic Model of Pneumatic Actuators. International
Journal of Fluid Power, Vol. 1, No. 2,
pp 39-47.
Mo, J. 1989. Analysis of Compressed Air Flow
Through a Spool Valve. Proc. IMechE, Part C, Vol.
, pp. 121-131.
Pourmovahed, A. and Otis, D. R. 1990. An Experimental
Thermal Time-Constant Correlation for Hydraulic
Accumulators. Transactions of the ASME,
Journal of Dynamic Systems, Measurement and
Control, Vol. 112, pp. 116-121.
Scavarda, S. and Richard, E. 1994. Non linear Control
of Electropneumatic and Electrohydraulic Servodrives:
A Comparison. 11th Aachener Fluidtechnisches
Koloquium, Aachen, pp. 223-236.
Sorli, M., Gastaldi, L., Codina, E. and de las Heras,
S. 1999. Dynamic Analysis of Pneumatic Actuators.
Simulation Practice and Theory, Special Issue on
Bondgraphs for Modeling and Simulation, Vol. 7,
pp. 589-602.
Virvalo, T. 1989. Designing a pneumatic position
servo system. Power International, June, pp. 141-
Virto, L. and Arun, N. 2000. Frictional Behaviour of
Textile Fabrics. Part II: Dynamic Response for Sliding
Friction. Textil Research Journal, Vol. 70, pp.
-260.
Wang, Y. and Singh, R. 1987. Frequency Response of
a Nonlinear Pneumatic System. Transactions of the
ASME, Journal of Applied Mechanics, Vol. 54, pp.
-214.
Weston, B., Moore, P., Thatcher, T. and Morgan, G.
Computer Controlled Pneumatic Servo
Drives. Proc. IMechE, Part B, Vol. 198, pp. 275-