OPTIMIZATION PERFORMANCE OF A MICROFLUID FLOW POWER CONVERTER
Keywords:
finite time thermodynamics, fluid flow, optimization performanceAbstract
This article deals with an application of the endoreversible thermodynamics theory of heat engine applied to micro-fluid flow power converters (MFPC). An analogy is demonstrated between thermal and fluid flow efficiencies. Maxi-mum power output and efficiency at maximum power are established for the device based upon the higher and lower pressure bounds. The linear and non linear fluid flows are considered with and without fluid friction losses. This paper provides theoretical limits for designing power flow converter. The best performances are obtained for linear fluid flow without flow losses.
Downloads
References
Bejan, A. 1988. Theory of heat transfer-irreversible power plants. Int. J. Heat Mass Transfer, 31, (6), pp. 1211- 1219.
Bejan, A. 1996. Maximum power from fluid flow. Int. J. Heat Mass Transfer, 39, pp. 1175-1181
Blank, D. A. and Wu, C. 1996. Power limit of an en-doreversible Ericsson cycle with regeneration. Energy Convers. Mgmt., 37 (1), pp. 59-66.
Chambadal, P. 1957. Les centrales nucléaires. Ar-mand Colin, Paris, France.
Chen, J. 1994.The maximum power output and maximum efficiency of an irreversible Carnot heat engine. J. Phys. D: Appl. Phys., 27, pp. 1144-1149.
Chen, J. and Wu, C. 2000. Analysis on the perfor-mance of a thermoelectric generator. J. of Energy Resources Technology, 102, pp. 61-63.
Chen, J. Yan, Z., Lin, G. and Andresen, B. 2001. On the Curzon-Ahlborn efficiency and its connection with the efficiencies of real heat engines. Energy Convers. Mgmt, 42, pp. 173-181.
Chen, L. Bi B. andWu, C. 1999. The influence of nonline-ar flow resistance relations on the power and efficiency from fluid flow. J. Phys. D. Appl. Physics, 32, pp. 1346-1349.
Chen, L., Sun, F. and Wu, C. 1998. Performance of chemical engines with mass leak. J. Phys. D: Appl. Phys., 31, pp. 1595-1600.
Comolet, R. 1994. Mécanique expérimentale des fluides, Tome II, Dynamique des fluides réels, 4th edition. Mas-son, Paris, France.
Curzon, F. F. and Albhorn, B. 1975. Efficiency of Carnot cycle at maximum power output. Am. J. Phys., 43, pp. 22-24.
Faisandier J. et al. 1999. Mécanismes hydrauliques et pneumatiques, 8th edition. Dunod, Paris, France.
Gordon, J. M. and Huleihil, M. 1992. General perfor-mance characteristics of real heat engines. J. Appl. Phys., 72, (3), pp. 829-837.
Idelchik, I. E. 1993. Handbook of hydraulic resistances. 3rd edition, CRC Press Boca Raton, DL.
Kodal, A. 2000. A comparative performance analysis of irreversible Carnot heat engines under maximum power density and maximum power conditions. Energy Con-vers. Mgmt, 41, pp. 235-248.
Le Goff, P., Cachot, T., Rebaudin, V. and Hornut, J. M. 2000. La thermodynamique chimique en temps fini. En-tropie, 224/225, pp. 26-31.
Löfdahl, L. and Gad-el-Hak, M. 1999, MEMS appli-cations in turbulence and flow control. Progress in Aerospace Sciences, 35, pp. 101-203.
Novikov, I. I. 1958. The efficiency of atomic power stations. J. Nucl. Energy, II, (7), pp. 125-128.
Nuwayhida, R. Y., Moukalleda, F. and Noueihedb, N. 2000. On entropy generation in thermoelectric devices. Energy Convers. Mgmt., 41, pp. 891-914.
Radcenco, V., Popescu, G., Apostol, V. and Feidt, M. 1993. Thermodynamique en temps fini appliquée aux machines motrices. Etudes de cas: machine à vapeur et moteur Stirling. Rev. Gén. Therm., 382, pp. 509-514.
Radchenco, V. 1994. Generalized Thermodynamics. Bu-charest Editura Technic