OPTIMIZATION PERFORMANCE OF A MICROFLUID FLOW POWER CONVERTER

Authors

  • François Lanzetta Centre de Recherche sur les Écoulements, les Surfaces et les Transfert CREST – CNRS – UMR 6000, UFC – UTBM – IMFC 2, avenue Jean Moulin 90000 Belfort, France
  • Philippe Désévaux Centre de Recherche sur les Écoulements, les Surfaces et les Transfert CREST – CNRS – UMR 6000, UFC – UTBM – IMFC 2, avenue Jean Moulin 90000 Belfort, France
  • Yannick Bailly Centre de Recherche sur les Écoulements, les Surfaces et les Transfert CREST – CNRS – UMR 6000, UFC – UTBM – IMFC 2, avenue Jean Moulin 90000 Belfort, France

Keywords:

finite time thermodynamics, fluid flow, optimization performance

Abstract

This article deals with an application of the endoreversible thermodynamics theory of heat engine applied to micro-fluid flow power converters (MFPC). An analogy is demonstrated between thermal and fluid flow efficiencies. Maxi-mum power output and efficiency at maximum power are established for the device based upon the higher and lower pressure bounds. The linear and non linear fluid flows are considered with and without fluid friction losses. This paper provides theoretical limits for designing power flow converter. The best performances are obtained for linear fluid flow without flow losses.

Downloads

Download data is not yet available.

Author Biographies

François Lanzetta, Centre de Recherche sur les Écoulements, les Surfaces et les Transfert CREST – CNRS – UMR 6000, UFC – UTBM – IMFC 2, avenue Jean Moulin 90000 Belfort, France

François Lanzetta is an Assistant Professor at the University of Franche-Comté. He received a Ph.D. degree in Engineering Sciences and Microtechnics from the University of Franche-Comté in 1997. His research interests include microsensors and their application to fluid mechanics and heat transfer in small structures, micro heat engines and refrigerating machines.

Philippe Désévaux, Centre de Recherche sur les Écoulements, les Surfaces et les Transfert CREST – CNRS – UMR 6000, UFC – UTBM – IMFC 2, avenue Jean Moulin 90000 Belfort, France

Philippe Désévaux is an Assistant Professor at the University of Franche-Comté. He received a Ph.D. degree in Engineering Sciences and Microtechnics from the University of Franche-Comté in 1994. His research interests are in the field of fluid dynamics and include the development of new investigation techniques and their application to the solution of problems for aerodynamics, hydrodynamics and two-phase flows.

Yannick Bailly, Centre de Recherche sur les Écoulements, les Surfaces et les Transfert CREST – CNRS – UMR 6000, UFC – UTBM – IMFC 2, avenue Jean Moulin 90000 Belfort, France

Yannick Bailly is an Assistant Professor at the Belfort-Montbeliard University of Technology (UTBM). He received a Ph.D. degree in Engineering Sciences and Microtechnics from the University of Franche-Comté in 1998. His research interests include the development of micro-measurements by both classical sensors and optical investigations dedicated to micro-fluidic (Active control of the boundary layer in Aerodynamics by means of micro-jets or MEMS) and micro-energetic (Fluid Mechanics and Heat Transfer in micro-refrigerators) .

References

Bejan, A. 1988. Theory of heat transfer-irreversible power plants. Int. J. Heat Mass Transfer, 31, (6), pp. 1211- 1219.

Bejan, A. 1996. Maximum power from fluid flow. Int. J. Heat Mass Transfer, 39, pp. 1175-1181

Blank, D. A. and Wu, C. 1996. Power limit of an en-doreversible Ericsson cycle with regeneration. Energy Convers. Mgmt., 37 (1), pp. 59-66.

Chambadal, P. 1957. Les centrales nucléaires. Ar-mand Colin, Paris, France.

Chen, J. 1994.The maximum power output and maximum efficiency of an irreversible Carnot heat engine. J. Phys. D: Appl. Phys., 27, pp. 1144-1149.

Chen, J. and Wu, C. 2000. Analysis on the perfor-mance of a thermoelectric generator. J. of Energy Resources Technology, 102, pp. 61-63.

Chen, J. Yan, Z., Lin, G. and Andresen, B. 2001. On the Curzon-Ahlborn efficiency and its connection with the efficiencies of real heat engines. Energy Convers. Mgmt, 42, pp. 173-181.

Chen, L. Bi B. andWu, C. 1999. The influence of nonline-ar flow resistance relations on the power and efficiency from fluid flow. J. Phys. D. Appl. Physics, 32, pp. 1346-1349.

Chen, L., Sun, F. and Wu, C. 1998. Performance of chemical engines with mass leak. J. Phys. D: Appl. Phys., 31, pp. 1595-1600.

Comolet, R. 1994. Mécanique expérimentale des fluides, Tome II, Dynamique des fluides réels, 4th edition. Mas-son, Paris, France.

Curzon, F. F. and Albhorn, B. 1975. Efficiency of Carnot cycle at maximum power output. Am. J. Phys., 43, pp. 22-24.

Faisandier J. et al. 1999. Mécanismes hydrauliques et pneumatiques, 8th edition. Dunod, Paris, France.

Gordon, J. M. and Huleihil, M. 1992. General perfor-mance characteristics of real heat engines. J. Appl. Phys., 72, (3), pp. 829-837.

Idelchik, I. E. 1993. Handbook of hydraulic resistances. 3rd edition, CRC Press Boca Raton, DL.

Kodal, A. 2000. A comparative performance analysis of irreversible Carnot heat engines under maximum power density and maximum power conditions. Energy Con-vers. Mgmt, 41, pp. 235-248.

Le Goff, P., Cachot, T., Rebaudin, V. and Hornut, J. M. 2000. La thermodynamique chimique en temps fini. En-tropie, 224/225, pp. 26-31.

Löfdahl, L. and Gad-el-Hak, M. 1999, MEMS appli-cations in turbulence and flow control. Progress in Aerospace Sciences, 35, pp. 101-203.

Novikov, I. I. 1958. The efficiency of atomic power stations. J. Nucl. Energy, II, (7), pp. 125-128.

Nuwayhida, R. Y., Moukalleda, F. and Noueihedb, N. 2000. On entropy generation in thermoelectric devices. Energy Convers. Mgmt., 41, pp. 891-914.

Radcenco, V., Popescu, G., Apostol, V. and Feidt, M. 1993. Thermodynamique en temps fini appliquée aux machines motrices. Etudes de cas: machine à vapeur et moteur Stirling. Rev. Gén. Therm., 382, pp. 509-514.

Radchenco, V. 1994. Generalized Thermodynamics. Bu-charest Editura Technic

Downloads

Published

2002-12-01

How to Cite

Lanzetta, F., Désévaux, P., & Bailly, Y. (2002). OPTIMIZATION PERFORMANCE OF A MICROFLUID FLOW POWER CONVERTER. International Journal of Fluid Power, 3(3), 5–12. Retrieved from https://journals.riverpublishers.com/index.php/IJFP/article/view/616

Issue

Section

Original Article