INVESTIGATIONS OF THE TEMPERATURE BEHAVIOUR OF THE PISTON CYLINDER ASSEMBLY IN AXIAL PISTON PUMPS
Keywords:
axial piston machine, piston cylinder assembly, nonisothermal gap flow, Reynolds Equation, energy equation, temperature distributionAbstract
In this paper the temperature behaviour of the piston cylinder assembly in swash plate type axial piston pumps is in-vestigated. For the theoretical investigations a mathematical model is used that allows the calculation of the non-isothermal gap flow between piston and cylinder. For this purpose the Reynolds Equation, the energy equation and the equations of motion have to be solved. The gap flow and the pressure distribution in the gap is calculated by solving the Reynolds Equation numerically with a finite volume method. The temperature distribution is obtained by solving the energy equation over the piston cylinder assembly also numerically with a finite volume method. It is known that the piston undergoes an eccentric motion in the cylinder that has a significant influence on the gap flow. To calculate this motion a simplified equation of motion, based on the external forces, the hydrodynamic forces and the forces caused by elastic deformation, is used. A method is described that combines the calculation of these three equations and that allows calculation of the gap flow and the temperature distribution in the assembly depending on the design and the operating parameters of the machine. The experimental investigations were made on a standard pump that was modified for the measurements. The temperature distributions in the whole cylinder block of the machine and the dynamic pressure in the displacement chamber were measured under real ope
Downloads
References
Berge, M. 1983. Computational Model of Non-isothermal Gap Flow (Slovak). PhD Thesis, TU Bratislava, Slovakia.
Engeln-Muellges, G. 1990. Formelsammlung zur numerischen Mathematik mit C-Programmen. Mannheim: Wissenschaftsverlag.
Ivantysyn, J. and Ivantysysnova, M. 1993. Hydrostatische Pumpen und Motoren. 1. Aufl., Würzburg: Vogel Verlag.
Ivantysynova, M. 1985. Temperaturfeld im Schmierspalt zwischen Kolben und Zylinder einer Axialkolbenmaschine. Maschinenbautech-nik. 34, pp. 532-535.
Ivantysynova, M. 1999a. Ways for Efficiency Im-provements of Modern Displacement Machines. 6th Scandinavian Intern. Conf. on Fluid Power. Tampere, Finnland.
Ivantysynova, M. 1999b. A New Approach to the Design of Sealing and Bearing Gaps of Dis-placement Machines. 4th JHPS International Symposium on Fluid Power. Tokyo, Japan.
Kleist, A. 1995. Berechnung von hydrostatischen Dichtstellen in hydraulischen Maschinen. Ölhydraulik und Pneumatik. 39, pp 767-771.
Krasser, J., Laback, O., Loibennegger B. und Priebsch, H. 1994. Anwendung eines elastohydrodynamischen Verfahrens zur Berechnung von Kurbeltriebslagern. Motortechnische Zeitschrift 55, pp. 656-663.
Olems, L. and Ivantysynova, M. 1998. Investigation of the cylinder / piston temperature behaviour in axial piston pumps. Proceedings of 1st Bratislavian Fluid Power Symposium, Bratislava, Slovakia.
Olems, L. 1999. Entwicklung eines nichtisothermen Simulationsmodells zur Berechnung des Spaltes der Kolben- Zylinderbaugruppe bei Axialkolbenmaschinen. Ölhydraulik und Pneu-matik. 43 No.11/12, pp. 833-839.
Patankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow. New York, Washington: Hemisphere Publishing Corporation.
Renius, K. T. 1974. Untersuchung zur Reibung zwischen Kolben und Zylinder bei Schrägscheiben- Axialkolbenmaschinen. VDI-Forschungsheft 561.
Rodermund, H. 1978. Berechnung der Temperaturabhängigkeit der Viskosität von Mineralölen aus dem Viskositätsgrad. Schmiertechnik und Tribologie. 25, pp. 56-57.
Vogelpohl, G. 1937. Beiträge zur Kenntnis der Gleitlagerreibung. VDI-Forschungsheft Nr. 386. Berlin: VDI-Verlag.