A Review of Electro-Hydraulic Servovalve Research and Development
DOI:
https://doi.org/10.13052/ijfp1439-9776.2013Keywords:
Review, servovalve, control, piezoelectric actuatorAbstract
This paper provides a review of the state of the art of electro-hydraulic servovalves, which are widely used valves in industrial applications and aerospace, being key components for closed loop electrohydraulic motion control systems. The paper discusses their operating principles and the analytical models used to study these valves. Commercially available units are also analysed in detail, reporting the performance levels achieved by current servovalves in addition to discussing their advantages and drawbacks. Adetailed analysis of research that investigates these valves via computational fluid dynamic analysis is also provided. Research studies on novel control systems and novel configurations based on the use of smart materials, wh
Downloads
References
Amirante, R., Catalano, L. A., & Tamburrano, P. (2014a). The importance of
a full 3D fluid dynamic analysis to evaluate the flow forces in a hydraulic
directional proportional valve. Engineering Computations, 31(5), 898–922.
https://doi.org/10.1108/EC-09-2012-0221
Amirante, R., Catalano, L. A., Poloni, C., & Tamburrano, P. (2014b).
Fluid-dynamic design optimization of hydraulic proportional directional
valves. Engineering Optimization, 46(10), 1295–1314. https://doi.org/
1080/0305215X.2013.836638
Amirante, R., Distaso, E., & Tamburrano, P. (2014c). Experimental
and numerical analysis of cavitation in hydraulic proportional directional
valves. Energy Conversion and Management, 87, 208–219.
https://doi.org/10.1016/j.enconman.2014.07.031
Amirante, R., Distaso, E., & Tamburrano, P. (2016). Sliding spool design
for reducing the actuation forces in direct operated proportional directional
valves: Experimental validation. Energy Conversion and Management, 119,
–410. https://doi.org/10.1016/j.enconman.2016.04.068
Anderson, R. T., & Li, P. Y. (2002). Mathematical Modeling of a Two
Spool Flow Control Servovalve Using a Pressure Control Pilot. Journal
of Dynamic Systems, Measurement, and Control, 124(3), 420–427.
https://doi.org/10.1115/1.1485287
Atchley, R. D. (1959). U.S. patent 2884907 R.D. Atchley. FiledAugust 1957 –
issued May 1959.
Aung, N. Z., & Li, S. (2014). A numerical study of cavitation phenomenon
in a flapper-nozzle pilot stage of an electrohydraulic servo-valve with an
innovative flapper shape. Energy Conversion and Management, 77, 31–39.
https://doi.org/10.1016/j.enconman.2013.09.009
Aung, N. Z., Yang, Q., Chen, M., & Li, S. (2014). CFD analysis of flow
forces and energy loss characteristics in a flapper-nozzle pilot valve with
different null clearances. Energy Conversion and Management, 83, 284–
https://doi.org/10.1016/j.enconman.2014.03.076
Bang, Y. B., Joo, C. S., Lee, K. I., Hur, J. W., & Lim, W. K.
(2003). Development of a two-stage high speed electrohydraulic servovalve
systems using stack-type piezoelectric elements. In IEEE/ASME
International Conference on Advanced Intelligent Mechatronics,AIM (Vol.
, pp. 131–136). https://doi.org/10.1109/AIM.2003.1225084
Bertin, M. (2017). Piezoelectric actuation of an aero engine fuel metering
valve. PhD Thesis. Department of Mechanical Engineering Centre for
Power Transmission and Motion Control, University of Bath.
Bertin, M. J. F., Bowen, C. R., Plummer, A. R., & Johnston, D. N. (2014).
An Investigation of Piezoelectric Ring Benders and Their Potential for
Actuating Servo Valves. In Proceedings of the Bath/ASME Symposium on
Fluid Power and Motion Control, Bath, United Kingdom, September 10–
, 2014 (p. 6). https://doi.org/10.1115/FPMC2014-7852
Blackburn, J. F., Reethof, G., & Shearer, J. L. (1960). Fluid power control,
The Mit press and Wiley.
Boyar, R. E., Johnson, B. A., & Schmid, L. (1955). Hydraulic Servo Control
Valves. WADC Technical Report 55-29, Wright-Patterson Air Force Base,
Ohio, 23–35.
Branson, D. T., Wang, F. C., Johnston, D. N., Tilley, D. G., Bowen, C. R.,
& Keogh, P. S. (2011). Piezoelectrically actuated hydraulic valve design
for high bandwidth and flow performance. Proceedings of the Institution of
Mechanical Engineers. Part I: Journal of Systems and Control Engineering,
(3), 345–359. https://doi.org/10.1177/09596518JSCE1037
Brito, A. G., Filho, W. C. L., & Hemerly, E. M. (2013). Identification
of a Hammerstein model for an aerospace electrohydraulic servovalve.
In IFAC Proceedings Volumes (IFAC-PapersOnline) 46(19), 459–463.
https://doi.org/10.3182/20130902-5-DE-2040.00119
Carson, T. H. (1960). U.S. patent 2934765. Filed Sept. 1955 – issued April
Cedrat. (2017). http://www.cedrat-technologies.com/en/products/actuators/
apa.html. Accessed September 2017.
Cheng, G. M., Li, P., Yang, Z. G. E, S. J., & Liu, J.F. (2005). Doublenozzle
piezoelectric servovalve. Guangxue Jingmi Gongcheng/Optics and
Precision Engineering, 13(3), 276–282.
Claeyssen, F., Lhermet, N., & Maillard, T. (2003). Magnetostrictive actuators
compared to piezoelectric actuators. In Proceedings of SPIE – The
International Society for Optical Engineering.
Di Rito, G., & Galatolo, R. (2008). Experimental and theoretical study of
the electrical failures in a fault-tolerant direct-drive servovalve for primary
flight actuators. Proceedings of the Institution of Mechanical Engineers.
Part I: Journal of Systems and Control Engineering, 222(8), 757–769.
https://doi.org/10.1243/09596518JSCE588
El-Araby, M., El-Kafrawy, A., & Fahmy, A. (2011). Dynamic performance of
a nonlinear non-dimensional two stage electrohydraulic servovalve model.
International Journal of Mechanics and Materials in Design, 7(2), 99–110.
https://doi.org/10.1007/s10999-011-9150-x
Fang, X., Yao, J., Yin, X., Chen, X., & Zhang, C. (2013). Physicsof-
failure models of erosion wear in electrohydraulic servovalve, and
erosion wear life prediction method. Mechatronics, 23(8), 1202–1214.
https://doi.org/10.1016/j.mechatronics.2013.09.006
Fink, A., & Singh, T. (1998). Discrete sliding mode controller for pressure
control with an electrohydraulic servovalve. Proceedings of the 1998 IEEE
International Conference on Control Applications, 1(September), 378–382.
Ghasemi, E., Jazayeri, S. A., & Moosavian, S. A. A. (2008). Model
improvement for a servovalve with force feedback and back pressure.
In 2008 IEEE International Conference on Robotics, Automation and
Mechatronics,RAM2008 (pp. 895–900). https://doi.org/10.1109/RAMECH.
4681461
Gordi´c, D., Babi´c, M., & Joviˇci´c, N. (2004). Modelling of spool position
feedback servovalves. International Journal of Fluid Power, 5(1), 37–51.
https://doi.org/10.1080/14399776.2004.10781182
Gordi´c, D., Babi´c, M., Joviˇci´c, N., & Milovanovi´c, D. (2008). Effects of the
variation of torque motor parameters on servovalve performance. Strojniski
Vestnik/Journal of Mechanical Engineering, 54(12), 866–873.
Grunwald, A., & Olabi, A. G. (2008). Design of a magnetostrictive
(MS) actuator. Sensors and Actuators, A: Physical, 144(1), 161–175.
https://doi.org/10.1016/j.sna.2007.12.034
Hiremath, S. (2013). Modeling and simulation of fluid structure interaction
in jet pipe electrohydraulic servovalve. International Journal of Recent
Advances in Mechanical Engineering (IJMECH), 2(4), 1–14.
Hiremath, S. S., & Singaperumal, M. (2010). Fluid structure interaction in
electrohydraulic servovalve: A finite element approach. In Proceedings of
SPIE – The International Society for Optical Engineering (Vol. 7500).
Hunt, T., & Vaughan, N. (1996). The Hydraulic Handbook, 9th edition,
copyright Elsevier science LTD.
Istanto, I., Kim, H. H., & Lee, I. Y. (2017). Effects of major design
parameters on three-stage electro-hydraulic servovalve performance.
In Lecture Notes in Electrical Engineering, 415 (LNEE), 459–468.
https://doi.org/10.1007/978-3-319-50904-4 49
Jacob, McHenya, M., Zhang, S., & Li, S. (2011). A study of flow-field
distribution between the flapper and nozzle in a hydraulic servo-valve.
Proceedings of 2011 International Conference on Fluid Power and Mechatronics,
FPM 2011, 658–662. https://doi.org/10.1109/FPM.2011.6045844
Jeon, J., Han, C., Han, Y. M., & Choi, S. B. (2014). A new type of a directdrive
valve system driven by a piezostack actuator and sliding spool. Smart
Materials and Structures, 23(7), 075002. https://doi.org/10.1088/0964-
/23/7/075002
Karunanidhi, S., & Singaperumal, M. (2010a). Mathematical modelling and
experimental characterization of a high dynamic servo valve integrated
with piezoelectric actuator. Proceedings of the Institution of Mechanical
Engineers. Part I: Journal of Systems and Control Engineering, 224(4),
–435. https://doi.org/10.1243/09596518JSCE899
Karunanidhi, S., & Singaperumal, M. (2010b). Design, analysis and
simulation of magnetostrictive actuator and its application to high dynamic
servo valve. Sensors and Actuators, A: Physical, 157(2), 185–197.
https://doi.org/10.1016/j.sna.2009.11.014
Li, L., Yan, H., Zhang, H., & Li, J. (2018). Numerical simulation and
experimental research of the flow force and forced vibration in the nozzleflapper
valve. Mechanical Systems and Signal Processing, 99, 550–566.
https://doi.org/10.1016/j.ymssp.2017.06.024
Li, P. Y. (2002). Dynamic Redesign of a Flow Control Servovalve Using a
Pressure Control Pilot. Journal of Dynamic Systems, Measurement, and
Control, 124(3), 428–434. https://doi.org/10.1115/1.1485288
Li, S., Aung, N. Z., Zhang, S., Cao, J., & Xue, X. (2013). Experimental
and numerical investigation of cavitation phenomenon in flapper-nozzle
pilot stage of an electrohydraulic servo-valve. Computers and Fluids, 88,
–598. https://doi.org/10.1016/j.compfluid.2013.10.016
Li, Y. (2016). Mathematical modelling and characteristics of the pilot valve
applied to a jet-pipe/deflector-jet servovalve. Sensors and Actuators, A:
Physical, 245, 150–159. https://doi.org/10.1016/j.sna.2016.04.048
Lin, S. J., & Akers, A. (1989). A Dynamic Model of the Flapper-
Nozzle Component of an Electrohydraulic Servovalve. Journal of Dynamic Systems, Measurement, and Control, 111(1), 105–109.
https://doi.org/10.1115/1.3153006
Lindler, J. E.,&Anderson, E. H. (2002). Piezoelectric direct drive servovalve.
In SPIE’s 9th Annual International Symposium on Smart Structures and
Materials, 2002, San Diego, California, United States.
Liu, X., He, J., Ye, Z., Cong, D., & Han, J. (2009). Modeling and
key technologies study of three-stage electro-hydraulic servo valve.
In Proceedings – 2009 International Asia Conference on Informatics
in Control, Automation, and Robotics, CAR 2009 (pp. 317–320).
https://doi.org/10.1109/CAR.2009.78
Maré, J. -C., & Attar, B. (2008). Realistic modelling of electrohydraulic
servovalves. In 6th International Fluid Power Conference – IFK 2008.
Maskrey, R. H., & Thayer, W. J. (1978). A Brief History of Electrohydraulic
Servomechanisms. Journal of Dynamic Systems, Measurement, and
Control, 100(2), 110–116. https://doi.org/10.1115/1.3426352
Mcnea, M., & Duan, S. S. (2013). The Effects of Orifice Sizes on a Hydraulic
Servo Valve Control System. In ASME 2013 International Mechanical
Engineering Congress and Exposition.
Merritt, H. (1967). Hydraulic Control System. John Wiley and Sons.
Milecki, A. (2006). Modelling & investigations of electrohydraulic servo
valve with piezo element. Maszyn i Automatyzacji,Archiwum Technologii,
(2), 177–184.
Mondal, N., & Datta, B. (2017). Effect of damping length on
dynamic performance of two-stage two-spool electrohydraulic servovalve.
Lecture Notes in Mechanical Engineering, Part F8, 1213–1222.
https://doi.org/10.1007/978-81-322-2743-4 115
Mondal, N., & Datta, B. N. (2013). A study on electro hydraulic servovalve
controlled by a two spool valve. International Journal of Emerging Technology
and Advanced Engineering An ISO Certified Int. Journal, 3(9001),
–484. Retrieved from www.ijetae.com
Moog. (1953). U.S. Patent 2625136 W.C. Moog filed April 1950-issued
January 1953.
Moog. (1965). U.S. Patent 2767689 W.C. Moog filed May 1953-issued
October 1965.
Moog. (2017). http://www.moog.com/products/servovalves-servo-proportio
nal-valves.html. Accessed September 2017.
Noliac. (2017). http://www.noliac.com/products/actuators/plate-stacks/.Accessed
September 2017.
Pan, X., Wang, G., & Lu, Z. (2011). Flow field simulation and a flow model
of servo-valve spool valve orifice. Energy Conversion and Management,
(10), 3249–3256. https://doi.org/10.1016/j.enconman.2011.05.010
Parr,A. (2011). Hydraulics and Pneumatics (Third edition) A technician’s and
engineer’s guide. (Elsevier, Ed.). Butterworth-Heinemann, The Boulevard,
Langford Lane, Kidlington, Oxford OX5 1GB, UK.
Persson, J., Plummer, A., Bowen, C., & Elliott, P. (2017). Non-linear Control
of a Piezoelectric Two Stage Servovalve. The 15th Scandinavian International
Conference on Fluid Power, SICFP’17, June 7-9, 2017, Link¨oping,
Sweden.
Persson, J., Plummer, A. R., Bowen, C. R., & Brooks, I. (2015).
Design and Modelling of a Novel Servovalve Actuated by a Piezoelectric
Ring Bender. In ASME/BATH 2015 Symposium on Fluid Power
and Motion Control, October 12–14, 2015, Chicago, Illinois, USA.
https://doi.org/10.1115/FPMC2015-9576
Persson, J., Plummer, A. R., Bowen, C. R., & Elliott, P. L. (2016). Dynamic
Modelling and Performance of a Two Stage Piezoelectric Servovalve. In
th FPNI Ph. D. Symposium on Fluid Power. American Society of Mechanic
Engineers.
Plummer,A. (2016). Electrohydraulic servovalves – past , present , and future.
th International Fluid Power Conference (IFK2016), 405–424.
Rashidy, H., Rezeka, S., Saafan, A., & Awad, T. (2003). A hierarchical
neuro-fuzzy system for identification of simultaneous faults in hydraulic
servovalves. Proceedings of the 2003 American Control Conference, 2003,
, 4269–4274. https://doi.org/10.1109/ACC.2003.1240507
Reichert, M. (2006). High response hydraulic servovalve with piezo-actuators
in the pilot stage. Olhydraulik and Pneumatik, 12, 1–17.
Samakwong, T., & Assawinchaichote, W. (2016). PID Controller
Design for Electro-hydraulic Servo Valve System with Genetic
Algorithm. In Procedia Computer Science (Vol. 86, pp. 91–94).
https://doi.org/10.1016/j.procs.2016.05.023
Sangiah, D. K., Plummer, A. R., Bowen, C. R., & Guerrier, P. (2011).
Modelling and Experimental Validation of a Novel Piezohydraulic Servovalve.
In ASME 2011 Dynamic Systems and Control Conference and
Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2
(Vol. 2, pp. 343–350). https://doi.org/10.1115/DSCC2011-5940
Sangiah, D. K., Plummer, A. R., Bowen, C. R., & Guerrier, P. (2013).
A novel piezohydraulic aerospace servovalve. Part 1: Design and
modelling. Proceedings of the Institution of Mechanical Engineers.
art I: Journal of Systems and Control Engineering, 227(4), 371–389.
https://doi.org/10.1177/0959651813478288
Sedziak, D. (2010). Investigations of Electrohydraulic Servo Valves with
Piezo Bender as Control Element. In 7th International Fluid Power
Conference (pp. 1–12).
Sell, N. P., Johnston, D. N., Plummer, A. R., & Kudzma, S. (2013). Control
of a fast switching valve for digital hydraulics. The 13th Scandinavian
International Conference on Fluid Power, 497–503.
Stefanski, F., Minorowicz, B., Persson, J., Plummer, A., & Bowen, C. (2017).
Non-linear control of a hydraulic piezo-valve using a generalised Prandtl–
Ishlinskii hysteresis model. Mechanical Systems and Signal Processing,
, 412–431. https://doi.org/10.1016/j.ymssp.2016.05.032
Tamburrano, P., Amirante, R., Distaso, E.,&Plummer, A. R. (2018a).Anovel
piezoelectric double-flapper servovalve pilot stage: Operating principle and
performance prediction. In Bath/ASME Symposium on Fluid Power and
Motion Control FPMC. 2018, 12–14 September 2018, University of Bath,
Bath (UK).
Tamburrano, P., Amirante, R., Distaso, E., & Plummer, A. R. (2018b). Full
simulation of a piezoelectric double nozzle flapper pilot valve coupled with
a main stage spool valve. Energy Procedia 148, 487–494.
Tamburrano, P., Plummer, A. R., Distaso, E., & Amirante, R. (2019). A
review of direct drive proportional electrohydraulic spool valves: industrial
state-of-the-art and research advancements. Journal of Dynamic Systems,
Measurement, and Control, 141(2), 020801. doi:10.1115/1.4041063.
Thorlabs. (2017). https://www.thorlabs.com/thorproduct.cfm?partnumber=P
B4NB2W. Accessed September 2017.
Tinsley. (1949). English patent 620688 . Applied May 1946-accepted March
Urata, P. E., Suzuki, K., & Mori, T. (2008). The Stiffness of Armature
Support in Servovalve Torque-Motors. In 6th International Fluid Power
Conference – IFK 2008 (pp. 113–126).
Wolpin, M. P. (1965). U.S. patent 3209782 M.P. Wolpin. Filed May 1955 –
issued October 1965.
Yang, Z., He, Z., Li, D., Xue, G., & Cui, X. (2014). Hydraulic amplifier
design and its application to direct drive valve based on magnetostrictive
actuator. Sensors and Actuators, A: Physical, 216, 52–63.
https://doi.org/10.1016/j.sna.2014.05.005
Yang, Q., Aung, N. Z., & Li, S. (2015a). Confirmation on the
effectiveness of rectangle-shaped flapper in reducing cavitation in flappernozzle
pilot valve. Energy Conversion and Management, 98, 184–198.
https://doi.org/10.1016/j.enconman.2015.03.096
Yang, Z., He, Z., Li, D., Yu, J., Cui, X., & Zhao, Z. (2015b). Direct drive
servo valve based on magnetostrictive actuator: Multi-coupled modeling
and its compound control strategy. Sensors and Actuators, A: Physical, 235,
–130. https://doi.org/10.1016/j.sna.2015.09.032
Ye, J., Xiong,Y., Li, F.,&Chen, S. (2010). Experimental study of effects of air
content on cavitation and pressure fluctuations. Journal of Hydrodynamics,
(5), 634–638. https://doi.org/10.1016/S1001-6058(09)60097-4
Yu, J., Zhuang, J., & Yu, D. (2014). Modeling and analysis of a rotary
direct drive servovalve. Chinese Journal of Mechanical Engineering, 27(5),
–1074. https://doi.org/10.3901/CJME.2014.0725.127
Zhang, K., Yao, J., & Jiang, T. (2014). Degradation assessment and life
prediction of electro-hydraulic servo valve under erosion wear. Engineering
Failure Analysis, 36, 284–300. https://doi.org/10.1016/j.engfailanal.2013.
017
Zhang, S., & Li, S. (2015). Cavity shedding dynamics in a flappernozzle
pilot stage of an electro-hydraulic servo-valve: Experiments and
numerical study. Energy Conversion and Management, 100, 370–379.
https://doi.org/10.1016/j.enconman.2015.04.047
Zhu, L., Shiju, E., Zhu, X., & Gao, C. (2010). Development of Hydroelectric
Servo-Valve Based on Piezoelectric Elements. In 2010 Int. Conf. Mech.
Autom. Control Eng. MACE2010 (pp. 3330– 3333).
Zhu, Y., & Li, Y. (2014). Development of a deflector-jet electrohydraulic
servovalve using a giant magnetostrictive material. Smart Materials and
Structures, 23(11). https://doi.org/10.1088/0964-1726/23/11/115001
Zhu, Y., Yang, X., & Wang, X. (2015). Development of a fournozzle
flapper servovalve driven by a giant magnetostrictive actuator.
Proceedings of the Institution of Mechanical Engineers. Part
I: Journal of Systems and Control Engineering, 229(4), 293–307.