Energy Efficient Pneumatics: Aspects of Control and Systems Theory

Authors

  • Daniel Müller Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany
  • Jonathan Haag Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany
  • Jennifer Wickert Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany
  • Adrian Raisch Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany
  • Kathrin Hoffmann Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany
  • Kevin Schmidt Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany
  • Oliver Sawodny Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany

DOI:

https://doi.org/10.13052/ijfp1439-9776.2333

Keywords:

Pneumatics, Energy Efficient, Control, Pneumatic System, Modelling, survey paper

Abstract

As the public call for increasing efforts in achieving the global climate protection goals intensifies, discussions about the efficient use of resources and energy are on the daily agenda. As many other areas, the industry has seen itself facing growing concerns about the long neglected environmental aspects. Since a large proportion of the energy in production is used by pneumatic drives, this survey paper exclusively focuses on pneumatics in handling and automation technology and presents the most common components, followed by multiple model-based strategies to increase energy efficiency in modern production plants.

First, single units are studied extensively and methods for design and energy efficient control are presented. Since in production lines pneumatic drives are generally operated in large networks, the second part focuses on energy efficient strategies at plant level. These include an optimized adjustment of the supply pressure, a cascaded air usage, and an automated adaptive control pattern. Care is taken to ensure that the considered approaches are applicable in today’s industrial plants, which is demonstrated by experiments in a production line. The experimental findings show the immense potential of the discussed measures in the form of compressed air savings of more than 60% compared to the industry standard.

Downloads

Download data is not yet available.

Author Biographies

Daniel Müller, Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany

Daniel Müller received his M.Sc. degree in Engineering Cybernetics from the University of Stuttgart, Germany, in 2018. Since spring 2018, he has been a Research Assistant with the Institute for System Dynamics, University of Stuttgart, Germany. His research interests include continuum manipulators, machine learning and optimization.

Jonathan Haag, Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany

Jonathan Haag received his B.Sc. degree in Engineering Cybernetics at the University of Stuttgart, Germany, in 2021. Since 2020 he has been a student assistant with the Institute for System Dynamics, University of Stuttgart, Germany. His research interests include systems and control theory.

Jennifer Wickert, Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany

Jennifer Wickert received her B.Sc. degree in Simulation Technology from the University of Stuttgart, Germany, in 2019. Since 2020, she has been a Student Assistant with the Institute for System Dynamics, the University of Stuttgart, Germany. Her research interests include system dynamics and machine learning.

Adrian Raisch, Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany

Adrian Raisch received the M.Sc. degree in Engineering Cybernetics from the University of Stuttgart, Germany, in 2015. He was a Research Assistant at the Institute for System Dynamics, University of Stuttgart, from 2015 until 2020, where he successfully finished his Ph.D. degree. His current research interests include modeling and control.

Kathrin Hoffmann, Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany

Kathrin Hoffmann received the M.S. degree in Engineering Science and Mechanics from the Georgia Institute of Technology, Atlanta, USA in 2018, and the M.Sc. degree in Engineering Cybernetics from the University of Stuttgart, Stuttgart, Germany in 2019. She is currently a Research Assistant with the Institute for System Dynamics, University of Stuttgart, Germany. Her research interests include the modeling and control of pneumatic drive systems as well robotics.

Kevin Schmidt, Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany

Kevin Schmidt received the Ph.D. degree in engineering cybernetics from the University of Stuttgart, Institute for System Dynamics, Germany, in 2020. His dissertation focused on disturbance compensation for adaptive high-power lasers. He was with the Center for Control Systems and Dynamics, UC San Diego, USA in 2016. Since 2021 he is with Robert Bosch GmbH, Corporate Sector Research and Advance Engineering. His research interests include modeling, optimization and control of distributed systems and uncertainty quantification as well as applications in the field networked and cyber-physical systems.

Oliver Sawodny, Institute for System Dynamics (ISYS), University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany

Oliver Sawodny received the Dipl.-Ing. degree in Electrical Engineering from the University of Karlsruhe, Karlsruhe, Germany, in 1991, and the Ph.D. degree from the Ulm University, Ulm, Germany, in 1996. In 2002, he became a Full Professor with the Technical University of Ilmenau, Ilmenau, Germany. Since 2005, he has been the Director of the Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany. His current research interests include methods of differential geometry, trajectory generation, and applications to mechatronic systems.

References

German Environment Agency. Energy consumption by sector. https://www.umweltbundesamt.de/daten/energie/energieverbrauch-nach-energietraegern-sektoren#entwicklung-des-endenergieverbrauchs-nach-sektoren-und-energietragern, 2020. Accessed: 2022-01-31.

T. Javied, T. Rackow, R. Stankalla, C. Sterk, and J. Franke. A study on electric energy consumption of manufacturing companies in the german industry with the focus on electric drives. Procedia CIRP, 41:318–322, 12 2016.

Deutsche Energie-Agentur GmbH (dena). Energieeffizienz in kleinen und mittleren Unternehmen. https://www.dena.de/fileadmin/dena/Dokumente/Pdf/1419_Broschuere_Energieeffizienz-in-KMU_2015.pdf, 2015. Accessed: 2022-02-07.

Y. Wang, K. Ueda, and S. A. Bortoff. A hamiltonian approach to compute an energy efficient trajectory for a servomotor system. Automatica, 49(12):3550–3561, 2013.

S. Merkelbach, H. Murrenhoff, C. Brecher, M. Fey, and B. Eßer. Pneumatische und elektro-mechanische Linearantriebe - Ein Vergleich der TCO. Olhydraulik und Pneumatik, 2017:42–49, 09 2017.

E. Rakova and J. Weber. Exonomy analysis for the selection of the most cost-effective pneumatic drive solution. In 9th FPNI Ph. D. Symposium on Fluid Power. American Society of Mechanical Engineers Digital Collection, 2016.

E. Rakova, J. Hepke, and J. Weber. Exonomy analysis for the inter-domain comparison of electromechanical and pneumatic drives. In Proceedings of the 10th International Fluid Power Conference, Dresden, Germany, pages 8–10, 2016.

R. Enparantza, O. Revilla, A. Azkarate, and J. Zendoia. A life cycle cost calculation and management system for machine tools. In 13th CIRP international conference on life cycle engineering, volume 2, pages 717–722, 2006.

M. Barkmeyer, A. Kaluza, N. Pastewski, S. Thiede, and C. Herrmann. Integration of stakeholder perspectives for development of sustainable automation components. Procedia CIRP, 48:388–393, 2016.

Y. Shi, M. Cai, W. Xu, and Y. Wang. Methods to evaluate and measure power of pneumatic system and their applications. Chinese Journal of Mechanical Engineering, 32(1):1–11, 2019.

M. Rückert, S. Merkelbach, R. Alt, and K. Schmitz. Online life cycle assessment for fluid power manufacturing systems–challenges and opportunities. In IFIP International Conference on Advances in Production Management Systems, pages 128–135. Springer, 2018.

S. Merkelbach, K. Schmitz, and H. Murrenhoff. Analysis of the economic and ecological properties of pneumatic actuator systems with pneumatic transformers. Number RWTH-2020-01561. Lehrstuhl und Institut für fluidtechnische Antriebe und Steuerungen, 2020.

R. Neumann and M. Doll. How big is the efficiency of pneumatic drives? An experiment provides clarity! In Modern Fluid Power - Challenges, Responsibilities, Markets, IFK, International Fluid Power Conference, 9, Modern Fluid Power - Challenges, Responsibilities, Markets, IFK, Internationales Fluidtechnisches Kolloquium, 9, pages 328–339, Aachen, 2014. HP-Fördervereinigung Fluidtechnik;.

S. Hirzel, T. Hettesheimer, and M. Schröter. Electric or pneumatic - comparing electric and pneumatic linear dives with regard to energy efficiency and costs. European Council for an Energy-Efficient Economy (ECEEE Industrial Summer Study), pages 475–484, 2014.

S. Merkelbach, H. Murrenhoff, M. Fey, and B. Eßer. Pneumatic or electromechanical drives – a comparison regarding their exergy efficiency. 2016.

W. Gauchel. Energiesparende Pneumatik – Konstruktive sowie schaltungs- und regelungstechnische Ansätze. O+P, pages 33–39, 2006.

P. Harris, G. E. O’Donnell, and T. Whelan. Energy efficiency in pneumatic production systems: state of the art and future directions. Leveraging technology for a sustainable world, pages 363–368, 2012.

Parker-Hannifin Corporation. Pneumatic actuator products – cylinders, guided cylinders and rotary actuators. catalog 0900p-6. https://www.parker.com/literature/Literature%20Files/pneumatic/Literature/Actuator-Cylinder/0900/0900P_Complete.pdf, 2016. Accessed: 2021-25-02.

AVENTICS GmbH. Technical information – supplement to the pneumatics catalog. www.aventics.com/uploads/mediadb/data/DOC/org/R412019128_2014-09-EN_TI-Katalog.PDF, 2018. Accessed: 2021-25-02.

SMC Pneumatics (UK) Ltd. The pneu book. www.smc.eu/portal_ssl/WebContent/local/UK/Pneu_Book/pneubook.pdf. Accessed: 2021-25-02.

S. Berchten and C. Ritz. Replacement of pneumatic and hydraulic drives with electrical drives-analysis of potential; Ersatz von pneumatischen und hydraulischen Antrieben durch Elektroantriebe. Potentialanalyse. 2006.

R. Gloor. Energy savings in Swiss compressed-air installations; Energieeinsparungen bei Druckluftanlagen in der Schweiz. 2000.

F. Ilmberger and F. Seyfried. Druckluftversorgungskonzepte für Industriebetriebe. Brennstoff Wärme Kraft, 46:398–398, 1994.

W. Bader and K. Kissock. Exergy analysis of industrial air compression. In National Industrial Energy Technology Conference, volume 22, pages 89–98. Texas A&M University, 2000.

S. Krichel, S. Hülsmann, S. Hirzel, R. Elsland, and O. Sawodny. Mehr Klarheit bei der Druckluft. Exergieflussdiagramme als neue Grundlage für Effizienzbetrachtungen bei Druckluftanlagen. Zeitschrift für Ölhydraulik und Pneumatik, 56:1–2, 2012.

E. Rakova and J. Weber. Process simulation of energy behaviour of pneumatic drives. Procedia Engineering, 106:149–157, 2015.

P. Harris, S. Nolan, and G. E. O’Donnell. Energy optimisation of pneumatic actuator systems in manufacturing. Journal of Cleaner Production, 72:35–45, 2014.

J. Hepke and J. Weber. Energy saving measures on pneumatic drive systems. In 13th Scandinavian International Conference on Fluid Power; June 3-5; 2013; Linköping; Sweden, number 092, pages 475–483. Linköping University Electronic Press, 2013.

M. Doll, R. Neumann, and O. Sawodny. Dimensioning of pneumatic cylinders for motion tasks. International Journal of Fluid Power, 16, 2015.

M. Doll. Optimierungsbasierte Strategien zur Steigerung der Energieeffizienz pneumatischer Antriebe. Shaker Verlag, 2016.

V. Vigolo and V. J. De Negri. Sizing optimization of pneumatic actuation systems through operating point analysis. Journal of Dynamic Systems, Measurement, and Control, 143(5), 2021.

VDI/VDE 3548. Antriebe in der Handhabung- und Montagetechnik. Auswahlkriterien und Energieeffizienz in linearen Einzelbewegungen. 2018.

J. Wang and T. Gordon. Energy-efficient tracking control of pneumatic cylinders. In 2011 50th IEEE Conference on Decision and Control and European Control Conference, pages 7956–7961. IEEE, 2011.

X. Shen and M. Goldfarb. Energy Saving in Pneumatic Servo Control Utilizing Interchamber Cross-Flow. Journal of Dynamic Systems, Measurement, and Control, 129(3):303–310, 10 2006.

A. Hildebrandt, R. Neumann, and O. Sawodny. Optimal system design of SISO-servopneumatic positioning drives. IEEE transactions on control systems technology, 18(1):35–44, 2009.

A. Hildebrandt and O. Sawodny. Trajectory generation and sizing of servopneumatic SISO-drives). at-Automatisierungstechnik, 55(2):75–85, 2007.

V. Blagojević, D. Šešlija, M. Stojiljković, and S. Dudić. Efficient control of servo pneumatic actuator system utilizing by-pass valve and digital sliding mode. Sadhana, 38(2):187–197, 2013.

E. J. Barth, J. Zhang, and M. Goldfarb. Sliding mode approach to pwm-controlled pneumatic systems. In Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), volume 3, pages 2362–2367. IEEE, 2002.

L. Endler, V. J. De Negri, and E. B. Castelan. Compressed air saving in symmetrical and asymmetrical pneumatic positioning systems. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 229(10):957–969, 2015.

K. Ahn and S. Yokota. Intelligent switching control of pneumatic actuator using on/off solenoid valves. Mechatronics, 15(6):683–702, 2005.

A. Pfeffer, T. Glück, and A. Kugi. Soft landing and disturbance rejection for pneumatic drives with partial position information. IFAC-PapersOnLine, 2016.

H. Du, C. Hu, W. Xiong, Z. Jiang, and L. Wang. Energy optimization of pneumatic actuating systems using expansion energy and exhaust recycling. Journal of Cleaner Production, 254:119983, 2020.

K. Janiszowski and M. Kuczyński. Energy saving control in low cost pneumatic positioning systems. In 2010 15th International Conference on Methods and Models in Automation and Robotics, pages 61–66. IEEE, 2010.

M. Y. Yusop. Energy saving for pneumatic actuation using dynamic model prediction. Cardiff University, 2006.

S. Merkelbach and H. Murrenhoff. Exergy based analysis of pneumatic air saving measures. In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers Digital Collection, 2015.

M. Doll, R. Neumann, and O. Sawodny. Energy efficient use of compressed air in pneumatic drive systems for motion tasks. In Proceedings of 2011 International Conference on Fluid Power and Mechatronics, pages 340–345. IEEE, 2011.

M. Doll, O. Sawodny, and R. Neumann. Energy efficient adaptive control of pneumatic drives with switching valves. In Proc. from the 7th International Fluid Power Conference, Dresden, 2012.

R. Parkkinen and P. Lappalainen. A consumption model of pneumatic systems. In Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting, pages 1673–1677. IEEE, 1991.

K. Hyvarinen and P. Lappalainen. A novel simulator of pneumatic networks. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT’96), pages 343–347. IEEE, 1996.

P. Harris, G. E. O’Donnell, and T. Whelan. Predictive consumption models for electropneumatic production systems. IEEE/ASME Transactions on Mechatronics, 18(5):1519–1526, 2012.

J. Parkkinen and K. Zenger. A new efficiency index for analysing and minimizing energy consumption in pneumatic systems. International Journal of Fluid Power, 9(1):45–52, 2008.

S. Krichel and O. Sawodny. Analysis and optimization of compressed air networks with model-based approaches. Ventil, 4(17):334–341, 2011.

S. Krichel. Komponentenmodellierung und Strukturoptimierung in industriellen Druckluftnetzen. Shaker, 2012.

A. Raisch and O. Sawodny. Energy savings in pneumatically driven plants. IEEE/ASME Transactions on Mechatronics, 2021.

X. Luo, J. Wang, H. Sun, J. W. Derby, and S. J. Mangan. Study of a new strategy for pneumatic actuator system energy efficiency improvement via the scroll expander technology. IEEE/ASME Transactions on Mechatronics, 18(5):1508–1518, 2012.

J. S. Leszczynski and D. Grybos. Compensation for the complexity and over-scaling in industrial pneumatic systems by the accumulation and reuse of exhaust air. Applied Energy, 239:1130–1141, 2019.

C. von Grabe and H. Murrenhoff. Efficiency improvements by air recuperation using the example of a pick-and-place-application. In Proceedings of the 9th JFPS International Symposium on Fluid Power,(JFPS), Matsue, Japan, pages 361–367, 2014.

J. Hepke. Energetische Untersuchung und Verbesserung der Antriebstechnik pneumatischer Handhabungssysteme. Shaker Verlag, 2017.

A. Raisch. Optimierungsbasierte Auslegung und Steuerung in der Pneumatik und Vergleich mit elektromechanischen Antrieben. Shaker Verlag, 2020.

H. Olsson, K. J. Åström, C. C. De Wit, M. Gäfvert, and P. Lischinsky. Friction models and friction compensation. Eur. J. Control, 4(3):176–195, 1998.

D. Schindele and H. Aschemann. Adaptive friction compensation based on the LuGre model for a pneumatic rodless cylinder. In Annual Conference of IEEE Industrial Electronics, 2009.

K. H. Hunt and F. R. E. Crossley. Coefficient of Restitution Interpreted as Damping in Vibroimpact. Journal of Applied Mechanics, 42(2):440–445, 06 1975.

M. Göttert. Bahnregelung servopneumatischer Antriebe, Berichte aus der Steuerungs- und Regelungstechnik. PhD thesis, Zugl.: Siegen, Univ., Diss., Aachen, 2004.

V. Falkenhahn. Modellierung und modellbasierte Regelung von Kontinuum-Manipulatoren. Shaker Verlag, 2017.

T. Glück, W. Kemmetmüller, and A. Kugi. Trajectory optimization for soft landing of fast-switching electromagnetic valves. IFAC Proceedings Volumes, 2011.

H.-P. Bala. Durchflussmessungen und strömungstechnische kenngrößen. O+ P ölhydraulik und pneumatik, 29:541–544, 1985.

D. Rager and R. Neumann. Simplified fluid transmission line model for pneumatic control applications. 14th Scandinavian International Conference on Fluid Power, pages 1–13, 2015.

R. Kern. Design and Experimental Validation of Output Feedback Tracking Controllers for a Pneumatic System with Distributed Parameters. PhD thesis, Technical University of Munich, 2019.

Industriebedarf Ohmert GmbH. Cylinder ISO 6432 price. https://www.pneumatikshop-online.de/de/rundzylinder-doppeltwirkend- iso-6432-zylinder-kolben-hub-pneumatikzylinder-isozylinder-iso-zyl inder.html, 2021. Accessed: 2021-03-10.

A. Raisch and O. Sawodny. Analysis and optimal sizing of pneumatic drive systems for handling tasks. Mechatronics, 59:168–177, 2019.

A. Raisch, S. Hülsmann, and O. Sawodny. Saving energy by predictive supply air shutoff for pneumatic drives. In 2018 European Control Conference (ECC), pages 965–970. IEEE, 2018.

A. Raisch and O. Sawodny. On evaluation of planar drive kinematics for handling tasks. In 2018 IEEE Conference on Decision and Control (CDC), pages 5134–5139. IEEE, 2018.

A. Raisch and O. Sawodny. Modeling and analysis of pneumatic cushioning systems under energy-saving measures. IEEE Transactions on Automation Science and Engineering, 17(3):1388–1398, 2019.

A. Raisch and O. Sawodny. Adapting energy optimal trajectories for friction-afflicted electromechanical drives. IFAC-PapersOnLine, 50(1):770–775, 2017.

A. Raisch and O. Sawodny. Consumption minimization for electromechanical drives by energy-optimal feedforward control. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pages 1557–1562. IEEE, 2019.

H. K. Khalil. Nonlinear systems, volume 2. 1996.

Downloads

Published

2022-09-08

How to Cite

Müller, D. ., Haag, J. ., Wickert, J. ., Raisch, A. ., Hoffmann, K. ., Schmidt, K. ., & Sawodny, O. . (2022). Energy Efficient Pneumatics: Aspects of Control and Systems Theory. International Journal of Fluid Power, 23(03), 299–342. https://doi.org/10.13052/ijfp1439-9776.2333

Issue

Section

Original Article