Stem Cell Therapy for Brain Tumors

Authors

  • Alexander Aleynik Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103 USA
  • Pranela Rameshwar Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103 USA

DOI:

https://doi.org/10.13052/ijts2246-8765.2015.005

Abstract

Glioblastoma multiforme (GBM), the most common and lethal brain cancer, prognosis remains bleak with a median survival of about 15 months despite maximal surgical resection, radiotherapy, and temozolomide treatment. The difficulty associated with safely and effectively delivering therapeutics across the blood brain barrier (BBB) is a major challenge towards GBM treatment. Ongoing research and clinical trials, including attempts to deliver therapeutics within stem cells present possible solutions. The relationships between brain cancer pathology, stem cell properties, therapeutic advantages and disadvan- tages of various stem cell types, drug delivery methods, cancer stem cells, gene therapy, anti-cancer vaccines, chimeric antigen receptor therapies, and combination therapies are discussed.

Downloads

Download data is not yet available.

References

Wen, P. Y., and S. Kesari. 2008. Malignant gliomas in adults. N Engl.

J. Med. 359: 492–507.

Lee, J. K., K. M. Joo, J. Lee, Y. Yoon, D. H. Nam. 2014. Targeting the

epithelial to mesenchymal transition in glioblastoma: the emerging role

of MET signaling. Onco Targets Ther. 7: 1933–1944.

Wilson, T. A., M. A. Karajannis, D. H. Harter. 2014. Glioblastoma

multiforme: State of the art and future therapeutics. Surg. Neurol. Int.

: 64.

Ferlay, J., H. R. Shin, F. Bray, D. Forman, C. Mathers, D. M. Parkin.

Estimates of worldwide burden of cancer in 2008: GLOBOCAN

Int. J. Cancer. 127: 2893–2917.

Serão, N. V. L., K. R. Delfino, B. R. Southey, J. E. Beever, and S.

L. Rodriguez-Zas. 2011. Cell cycle and aging, morphogenesis, and

response to stimuli genes are individualized biomarkers of glioblastoma

progression and survival. BMC Med. Genomics 4: 1–21

Dai, C., and E. Holland. 2005. Astrocyte differentiation states and

glioma formation. In Glioblastoma Multiforme. J. Markert, V. T. DeVita,

S. A. Rosenberg, and S. Hellman, eds. Jones and Barlett Publishers,

Subury, MA. p. 1–316.

Kleihues, P., and H. Ohgaki. Primary and secondary glioblastomas:

from concept to clinical diagnosis. Neuro-Oncology 1998: 44–51.

Morizane, A., J. Y. Li, P. Brundin. 2008. From bench to bedside: the

potential of stem cells for the treatment of Parkinson’s disease. Cell

Tissue Res. 331: 323–336.

Mouhieddine, T. H., F. H. Kobeissy, M. Itani, A. Nokkari, and K. K. W.

Wang. 2014. Stem cells in neuroinjury and neurodegenerative disorders:

challenges and future neurotherapeutic prospects. Neural Regen. Res.

: 901–906.

Feng, Z., and F. Gao. 2012. Stem cell challenges in the treatment of

neurodegenerative disease. CNS Neurosci. Ther. 18: 142–148.

Kim, S. U., H. J. Lee, and Y. B. Kim. 2013. Neural stem cell-based

treatment for neurodegenerative diseases. Neuropathology 33:

–504.

Wang, S., H. Cheng, G. Dai, X. Wang, R. Hua, X. Liu, P. Wang, G.

Chen, W. Yue, Y. An. 2013. Umbilical cord mesenchymal stem cell

transplantation significantly improves neurological function in patients

with sequelae of traumatic brain injury. Brain Res. 1532: 76–84.

Achyut, B. R., N. R. S. Varma, A. S. Arbab. 2014. Application of

umbilical cord blood derived stem cells in diseases of the nervous

system. J. Stem Cell Res. Ther. 4: 202.

Ali, H., N. Bayatti, S. Lindsay, A. A. Dashti, F. Al-Mulla. 2013.

Directed differentiation of umbilical cord blood stem cells into cortical

GABAergic neurons. Acta Neurobiol. Exp. 73: 250–259.

Volarevic, V., N. Arsenijevic, M. L. Lukic, and M. Stojkovic. 2011.

Concise review: mesenchymal stem cell treatment of the complications

of diabetes mellitus. Stem Cells 29: 5–10.

Sigurjonsson, O. E., M. C. Perreault, T. Egeland, J. C. Glover. 2005.

Adult human hematopoietic stem cells produce neurons efficiently in

the regenerating chicken embryo spinal cord. Proc. Natl. Acad. Sci.

USA 102: 5227–5232.

Pang, Z. P., N. Yang, T. Vierbuchen, A. Ostermeier, D. R. Fuentes, T. Q.

Yang, A. Citri, V. Sebastiano, S. Marro, T. C. Sudhof, M. Wernig. 2011.

Induction of human neuronal cells by defined transcription factors.

Nature 476: 220–223

Liu, X., F. Li, E. A. Stubblefield, B. Blanchard, T. L. Richards, G. A.

Larson, Y. He, Q. Huang, A. C. Tan, D. Zhang, T. A. Benke, J. R.

Sladek, N. R. Zahniser, C. Y. Li. 2012. Direct reprogramming of human

fibroblasts into dopaminergic neuron-like cells. Cell Res. 22: 321–32.

Takahashi, K., and S. Yamanaka. 2006. Induction of pluripotent stem

cells from mouse embryonic and adult fibroblast cultures by defined

factors. Cell 126: 663–676.

Sivapatham, R., and X. Zeng. 2014. Generation and characterization

of patient-specific induced pluripotent stem cell for disease modeling.

Methods Mol. Biol. 2014: 1–20.

Streckfuss-Bomeke, K., F. Wolf, A. Azizian, M. Stauske, M. Tiburcy,

S. Wagner, D. Hubscher, R. Dressel, S. Chen, J. Jende, G. Wulf, V.

Lorenz, M. P. Schon, L. S. Maier, W. H. Zimmermann, G. Hasenfuss,

and K. Guan. 2013. Comparative study of human-induced pluripotent

stem cells derived from bone marrow cells, hair keratinocytes, and skin

fibroblasts. Eur. Heart J. 34: 2618–2629.

Sunberg, M., H. Bogetofte, T. Lawson, J. Jansson, G. Smith, A.

Astradsson, M. Moore, T. Osborn, O. Cooper, R. Spealman, P. Hallet, O.

Isacson. 2013. Improved cell therapy protocols for Parkinson’s disease

based on differentiation efficiency and safety of hESC-, hiPSC-, and

non-human primate iPSC-derived dopaminergic neurons. Stem Cells

: 1548–1562.

Buttery, P. C., and R. A. Barker. 2014. Treating Parkinson’s dis-

ease in the 21st century: Can stem cell transplantation compete? J.

Comparative Neurol. 522: 2802–2816.

Kim, D., C. H. Kim, J. I. Moon, Y. G. Chung, M. Y. Chang, B. S.

Han, S. Ko, E. Yang, K. Y. Cha, R. Lanza, and K. S. Kim. 2009.

Generation of human induced pluripotent stem cells by direct delivery

of reprogramming proteins. Cell Stem Cell 4: 472–476.

Hou, L. L., and T. Hong. 2012. Stem cells and neurodegenerative

diseases. CNS Neurosci. Ther. 51:287–294.

Soldner, F., D. Hockemeyer, C. Beard, Q. Gao, G.W. Bell, E.G. Cook,

G. Hargus, A. Blak, O. Cooper, M. Mitalipova, O. Isacson, and R.

Jaenisch. 2009. Parkinson’s disease patient-derived induced pluripotent

stem cells free of viral reprogramming factors. Cell 136: 964–977.

Huang, G. T.-J., S. Gronthos, and S. Shi. 2009. Mesenchymal stem cells

derived from dental tissues vs. those from other sources. J. Dent. Res.

: 792–806.

Caplan, A. I., and J. E. Dennis. 2006. Mesenchymal stem cells as trophic

mediators. J. Cell Biochem. 98: 1076–1084.

Phiney, D. G., and D. J. Prockop. 2007. Mesenchymal stem/ multipotent

stromal cells: the state of transdifferentiation and modes of tissue repair-

current views. Stem Cells 25: 2896–2902.

Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas,

J. D. Mosca, M. A. Moorman, D. W. Moorman, D. W. Simonetti, S.

Craig, and D. R. Marshak.1999. Multilineage potential of adult human

mesenchymal stem cells. Science 284: 143–147.

Asakura, A., M. Komaki, M. A. Rudnicki. 2001. Muscle satellite cells

are multipotential stem cells that exhibit myogenic, osteogenic, and

adipogenic differentiation. Differentiation 68: 245–253.

De Bari, C., F. Dell’Accio, P. Tylzanowski, F. P. Luyten. 2001. Multi-

potent mesenchymal stem cells from adult human synovial membrane.

Arthritis Rheum. 44: 1928–1942.

Akimoto, K., K. Kimura, M. Nagano, S. Takano, G.T. Salazar, T.

Yamashita, and O. Ohneda. 2013. Umbilical cord blood-derived mes-

enchymal stem cells inhibit, but adipose tissue-derived mesenchymal

stem cells promote, glioblastoma multiforme proliferation. Stem Cells

Dev 22: 1370–1386.

Nagano, M., K. Kimura, T. Yamashita, K. Ohneda, D. Nozawa, H.

Hamada, H. Yoshikawa, N. Ochiai, and O. Ohneda. 2010. Hypoxia

responsive mesenchymal stem cells derived from human umbili-

cal cord blood are effective for bone repair. Stem Cells Dev 19:

–1210.

Bieback, K., S. Kern, H. Klüter, and H. Eichler. 2004. Critical param-

eters for the isolation of mesenchymal stem cells from umbilical cord

blood. Stem Cells 22: 625–634.

Parolini, O., F. Alviano, G. P. Bagnara, G. Bilic, H. J. Buhring, M.

Evangelista, S. Hennerbichler, B. Liu, M. Magatti, N. Mao, T. Miki, F.

Marongiu, H. Nakajima, T. Nikaido, C. B. Portmann-Lanz, V. Sankar,

M. Soncini, G. Stadler, D. Surbek, T. A. Takahashi, H. Redl, N.

Sakuragawa, S. Wolbank, S. Zeisberger, A. Zisch, and S. C. Strom.

Concise review: isolation and characterization of cells from

human term placenta: outcome of the first international Workshop on

Placenta Derived Stem Cells. Stem Cells 26: 300–311.

Tran, T. C., K. Kimura, M. Nagano, T. Yamashita, K. Ohneda, H.

Sugimori, F. Sato, Y. Sakakibara, H. Hamada, H. Yoshikawa. S. N.

Hoang, and O. Ohneda. 2011. Identification of human placenta-derived mesenchymal stem cells involved in re-endothelialization. J. Cell.

Physiol. 226: 224–235.

De Coppi, P., G. Bartsch, M. M. Siddiqui, T. Xu, C. C. Santos, L. Perin,

G. Mustoslavsky, A. C. Serre, E. Y. Snyder, J. J. Yoo, M. E. Furth, S.

Soker, and A. Atala. 2007. Isolation of amniotic stem cell lines with

potential for therapy. Nat. Biotechnol. 25: 100–106.

Ciavarella, S., F. Dammacco, M. De Matteo, G. Loverro, and F.

Silvestris. 2009. Umbilical cord mesenchymal stem cells: role of

regulatory genes in their differentiation to osteoblasts. Stem Cells Dev.

: 1211–1220.

Castillo, M., K. Liu, L. Bonilla, and P. Rameshwar. 2007. The immune

properties of mesenchymal stem cells. Int. J. Biomed. Sci. 3: 76–80.

Mariotti, V., S. J. Greco, R. D. Mohan, G. R. Nahas, and P. Rameshwar.

Stem cell in alternative treatment for brain tumors: potential for

gene delivery. Mol. and Cell. Ther. 2: 1–10.

Pendleton, C., Q. Li, D. A. Chesler, K. Yuan, H. Guerrero-Cazares, and

A. Quinones-Hinojosa. 2013. Mesenchymal stem cells derived from

adipose tissue vs bone marrow: in vitro comparison of their tropism

towards gliomas. PLos One 8:e58198.

Lamfers, M., S. Idema, F. van Milligen, T. Schouten, P. van der Valk,

P. Vandertop, C. Dirven, and D. Noske. 2009. Homing properties of

adipose-derived stem cells to intracerebral glioma and the effects of

adenovirus infection. Cancer Lett. 274: 78–87.

Abdulrazzak, H., D. Moschidou, G. Jones, and P.V. Guillot. 2010.

Biological characteristics of stem cells from foetal, cord blood and

extraembryonic tissues. J. R. Soc. Interface 7:S689–S706.

Kelly, S., T. M. Bliss, A. K. Shah, G. H. Sun, M. Ma, W. C. Foo, J.

Masel, M. A. Yenari, I. L. Weissman, N. Uchida, T. Palmer, and G. K.

Steinberg. 2004. Transplanted human fetal neural stem cells survive,

migrate, and differentiate in ischemic rat cerebral cortex. Proc. Natl.

Acad. Sci. USA 101: 11839–11844.

Jablonska, A., H. Kozlowska, I. Markiewicz, K. Domanska-Janik, and

B. Lukomska. 2010. Transplantation of neural stem cells derived from

human cord blood to the brain of adult and neonatal rats. Acta Neurobiol.

Exp. 70: 337–350.

Armstrong, R. J., C. Watts, C. N. Svendsen, S. B. Dunnett, and A. E.

Rosser. 2000. Survival, neuronal differentiation, and fiber outgrowth

of propagated human neural precursor grafts in an animal model of

Huntington’s disease. Cell Transplant. 9: 55–64.

Lee, A. S., C. Tang, M. S. Rao, I. L. Weissman, and J. C. Wu. 2013.

Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies.

Nat. Med. 19: 998–1004.

Chen, K. G., B. S. Mallon, R. D. G. McKay, and P. G. Robey. 2014.

Human pluripotent stem cell culture: considerations for maintenance,

expansion, and therapeutics. Cell Stem Cell 14: 13–26.

Petit, G. H., T. T. Olsson, and P. Brundin. 2014. The future of cell

therapies and brain repair: Parkinson’s disease. Neuropathol. Appl.

Neurobiol. 40: 60–70.

Park, D. Y., R. E. Mayle, R. L. Smith, I. Corcoran-Schwartz, A.

I. Kharizi, and I. Cheng. 2013. Combined transplantation of human

neuronal and mesenchymal stem cells following spinal cord injury.

Global Spine J. 3: 1–6.

Borlongan, C. V., L. E. Glover, N. Tajiri, Y. Kaneko, and T. B.

Freeman. 2011. The great migration of bone marrow-derived stem cells

toward the ischemic brain: therapeutic implications for stroke and other

neurological disorders. Prog. Neurobiol. 95: 213–228.

Zhao, F., Y. Qu, H. Liu, B. Du, and D. Mu. 2014. Umbilical cord

blood mesenchymal stem cells co-modified by TERT and BDNF: a

neuroprotective therapy for neonatal hypoxic–ischemic brain damage.

Int. J. Dev. Neurosci. 38: 147–154.

Fu, L., L. Zhu, Y. Huang, T. D. Lee, S. J. Forman, C. C. Shih. 2008.

Derivation of neural stem cells from mesenchymal stemcells: evidence

for a bipotential stem cell population. Stem Cells Dev. 17: 1109–1121.

Castaño, J., P. Menendez, C. Bruzos-Cidon, M. Straccia, A. Sousa,

L. Zabaleta, N. Vazquez, A. Zubiarrain, K. C. Sonntag, L. Ugedo, X.

Carvajal-Vergara, J. M. Canals, M. Torrecilla, R. Sanchez-Pernaute,

and A. Giorgetti. 2014. Fast and efficient neural conversion of human

hematopoietic cells. Stem Cell Rep. 3: 1118–1131.

Sun, T., and Q. H. Ma. 2013. Repairing neural injuries using human

umbilical cord blood. Mol. Neurobiol. 47: 938–945.

Sanai, N., A. Alvarez-Buyla, and M. S. Berger. 2005. Neural stem cells

and the origin of gliomas. N Engl. J. Med. 335: 811–822.

Gage, F. H. 2000. Mammalian neural stem cells. Science 287:

–1438.

Doetsch, F., I. Caille, D. A. Lim, J.M. Garcia-Verdugo, and A. Alvarez-

Buylla. 1999. Subventricular zone astrocytes are neural stem cells in

the adult mammalian brain. Cell 97: 703–716.

Sohur, U. S., J. G. Emsley, B. D. Mitchell, and J. D. Macklis. 2006.

Adult neurogenesis and cellular brain repair with neural progenitors,

precursors, and stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci.

: 1477–1497.

Emsley, J. G., B. D. Mitchell, G. Kempermann, and J. D. Macklis. 2005.

Adult neurogenesis and repair of the adult CNS with neural progenitors,

precursors, and stem cells. Prog. Neurobiol. 75: 321–341.

Galvin, K. A. and D. G. Jones. 2006. Adult human neural stem cells for

autologous cell replacement therapies for neurodegenerative disorders.

NeuroRehabilitation 21: 255–265.

Arsenijevic, Y., J. G. Villemure, J. F. Brunet, J. J. Bloch, N. Deglon, C.

Kostic, A. Zurn, and P. Aebischer. 2001. Isolation of multipotent neural

precursors residing in the cortex of the adult human brain. Exp. Neurol.

: 48–62.

Kukekov, V.G., E. D. Laywell, O. Suslov, K. Davies, B. Scheffler, L. B.

Thomas, T. F. O’Brien, M. Kusakabe, and D. A. Steindler. Multipotent

stem/progenitor cells with similar properties arise from two neurogenic

regions of adult human brain. Exp. Neurol. 156: 333–344.

Juengst, E., and M. Fossel. 2000. The ethics of embryonic stem cells—

now and forever, cells without end. J. Am. Med. A 284: 3180–3184.

Kornblum, H. I. 2007. Introduction to neural stem cells. Stroke 38:

–816.

Fuentealba, L. C., K. Obernier, and A. Alvarez-Buylla. 2012. Adult

neural stem cells bridge their niche. Cell Stem Cell 10: 698–708.

Chiu, A. Y., and M. S. Rao. 2011. Cell-based therapy for neural

disorders-anticipating challenges. Neurotherapeutics 8 (4): 744–752.

Lindvall, O., and Z. Kokaia. 2010. Stem cells in human neurodegen-

erative disorders–time for clinical translation? J. Clin. Invest. 120 (1):

–40.

De Filippis, L., and E. Binda. Concise review: self-renewal in the central

nervous system: neural stem cells from embryo to adult. Stem Cells

Transl. Med. 1 (4): 298–308.

Dantuma, E., S. Merchant, K. Sugaya. 2010. Stem cells in human

neurodegenerative disorders-time for clinical translation? J Clin. Invest.

(5): 37.

Dubois, L G., L. Campanati, C. Righy, I. D’Andrea-Meira, T. C. Leite de

Sampaio e Spohr, I. Porto-Carreiro, C. M. Pereira, J. Balca-Silva, S. A.

Kahn, M. F. DosSantos, M. De Almeida Rabello Oliveira, A. Ximenes-

da Silva, M. C. Lopes, E. Faveret, E. Leandro, and G. V. Moura-Neto.

Gliomas and the vascular fragility of the blood brain barrier.

Front. Cell Neurosci. 8: 418.

Lossinsky, A. S., and R.R. Schivers. 2004. Structural pathways for

macromolecular and cellular transport across the blood–brain barrier

during inflammatory conditions. Review. Histol. Histopathol. 19 (2):

–564.

Aleynik, A., K. M. Gernavage, Y. S. H. Mourad, L. S. Sherman, K. Liu,

Y. A. Gubenko, and P. Rameshwar. 2014. Stem cell delivery of therapies

for brain disorders. Clin. Transl. Med. 3: 24 doi:10.1186/2001-1326-3-

Pardridge, W. M. 2006. Molecular Trojan horses for blood–brain barrier

drug delivery. Discov. Med. 6 (5): 494–500.

Pardridge, W., M. 2001. Brain Drug targeting and gene technologies.

Jpn. J. Pharmacol. 87 (2): 97–103.

Pardridge W. M. 2000. Blood–brain barrier drug targeting enables neu-

roprotection in brain ischemia following delayed intravenous admin-

istration of neurotrophins. In: Madame Curie Bioscience Database

[Internet]. Landes Bioscience 2000, Austin, TX. Available from:

http://www.ncbi.nlm.nih.gov/books/NBK5974/

Aiken, R. 2014. Molecular neuro-oncology and the challenge of the

blood–brain barrier. Semin. Oncol. 41 (4): 438–445.

Seelig, A., R. Gottschlich, and R. M. Devant. 1994. A method to

determine the ability of drugs to diffuse through the blood–brain barrier.

PNAS 91: 68–72.

Boado, R. J., E. Ka-Wai Hui, J. Zhiqiang Lu, and W. M. Pardridge.

Insulin receptor antibody–iduronate 2-sulfatase fusion protein:

pharmacokinetics, anti-drug antibody, and safety pharmacology in

rhesus monkeys. Biotechnol. Bioeng. 111 (11): 2317–25.

Reagan, M. R., and D. L. Kaplan. 2011. Concise review: mesenchymal

stem cell tumor-homing: detection methods in disease model systems.

Stem Cells 29 (6): 920–927.

Jordan, C. T., M. L. Guzman, and M. Noble. 2006. Cancer stem cells.

N Eng. J. Med. 335: 1253–1261.

Xiangpen, Y., J. Curtis, X. Yizhi, L. Gentao, S. Waschsmann-Hogiu, D.

L. Farkas, K. L. Black, and J. S. Yu. 2004. Isolation of cancer stem cells

from adult glioblastoma multiforme. Oncogene 23 (58): 9392–9400.

Alieva, M., J. R. Bago, E.Aguilar, C. Soler-Botija, O. F. Vila, J. Molet, S.

S. Gambhir, N. Rubio, and J. Blanco. 2012. Glioblastoma therapy with cytotoxic mesenchymal stromal cells optimized by bioluminescence

imaging of tumor and therapeutic cell response. PloS One 7 (4):e35148.

Altanerova, V., M. Cihova, M. Babic, B. Rychly, K. Ondicova,

B. Mravec, and C. Altaner. 2012. Human adipose tissue-derived

mesenchymal stem cells expressing yeast cytosinedeaminase::uracil

phosphoribosyltransferase inhibit intracerebral rat glioblastoma. Int. J.

Cancer 130 (10): 2455–2463.

Roger, M., A. Clavreul, N. Trinh Huynh, C. Passirani, P. Schiller, A.

Vessi`eres, C. Montero-Meneia, and P. Menei. 2011. Ferrociphenol lipid

nanocapsule delivery by mesenchymal stromal cells in brain tumor

therapy. Int. J. Pharm. 423 (1): 63–68.

Kim, S. M., J. S. Woo, C. H. Jeong, C. H. Ryu, J. D. Jang, and S.

S. Jeun. 2014. Potential application of temozolomide in mesenchymal

stem cell-based trail gene therapy against malignant glioma. Stem Cells

Transl. Med. 3 (2): 172–182.

Snyder, E. Y., X. O. Breakefield, K. S. Aboody, U. Herrlinger, and W.

P. Lynch, inventor The Children’s MedicalCenter Corporation Boston,

MA, USA; The General Hospital Corporation, Charlestown, MA, USA;

Northeastern Ohio Universities College of Medicine, Rootstown, OH,

USA assignee. US Patent # 7186409. Neural stem cells and use

thereof for brain tumor therapy. United States 2007.

Ahmed, A. U., B. Thaci, A. L. Tobias, B. Auffinger, L. Zhang, Y. Cheng,

C. K. Kim, C. Yunis, Y. Han, N. G. Alexiades, X. Fan, K. S. Aboody,

and M. S. Lesniak. 2012. A preclinical evaluation of neural stem cell-

based cell carrier for targeted antiglioma oncolytic virotherapy. JNCI

(13): 968–977.

Cheng, Y., R. Morshed, S. H. Cheng, A. Tobias, B. Auffinger, D. A.

Wainwright, L. Zhang, C. Yunis, Y. Han, C. T. Chen, L. W. Lo, K.

S. Aboody, A. U. Ahmed, and M. S. Lesniak. 2013. Nanoparticle-

programmed self-destructive neural stem cells for glioblastoma target-

ing and therapy. Small 9 (24): 4123–4129.

Larsen, J. M., D. R. Martin., and M. E. Byrne. 2014. Recent advances

in delivery through the blood–brain barrier. Curr. Top. Med. Chem. 14

(9): 1148–1160.

Brem, H., M. G. Ewend, S. Piantadosi, J. Greenhoot, P. C. Burger, and

M. Sisti. 1995. The safety of interstitial chemotherapy with BCNU-

loaded polymer followed by radiation therapy in the treatment of newly

diagnosed malignant gliomas: phase I trial. J. Neurooncol. 26: 111–123.

Hart, M. G., R. Grant, R. Garside, G. Rogers, M. Somerville, and K.

Stein. 2011. Chemotherapy wafers for high grade glioma. Cochrane

Database Syst. Rev. 3. doi:10.1002/14651858.CD007294.pub2.

Chowdhary, S. A., T. Ryken, and H. B. Newton. 2015. Survival out-

comes and safety of carmustine wafers in the treatment of high-grade

gliomas: a meta-analysis. J. Neurooncol. 122 (2): 367–382.

Salahuddin, T. S., B. B. Johansson, H. Kalimo, and Y. Olsson. 1988.

Structural changes in the rat brain after carotid infusions of hyperos-

molar solutions: a light microscopic and immunohistochemical study.

Neuropathol. Appl. Neurobiol. 77: 5–13.

Burgess, A., and K. Hynynen. 2013. Noninvasive and targeted drug

delivery to the brain using focused ultrasound ACS Chem. Neurosci. 4

(4): 519–526.

Egleton, R. D., and T. P. Davis. 2005. Development of neuropeptide

drugs that cross the blood–brain barrier. Neurotherapeutics 2 (1):

–53.

Ramalho-Santos, M., S. Yoon, Y. Matsuzaki, R. C. Mulligan, and D. A.

Melton. 2002. “Stemness”: transcriptional profiling of embryonic and

adult stem cells. Science 298 (5593): 597–600.

Sun, J., A. Ramos, B. Chapman, J. B. Johnnidis, L. Le, Y. J. Ho, A.

Klein, O. Hofmann, and F. D. Camargo. 2014. Clonal dynamics of

native haematopoiesis. Nature 514 (7522): 322–327.

Ning, J., and H. Wakimoto. 2014. Oncolytic herpes simplex virus-

based strategies: toward a breakthrough in glioblastoma therapy. Front.

Microbiol. 5 (303): 1–13.

Kaufmann, J. K., and E. A. Chiocca. 2014. Glioma virus therapies

between bench and bedside. Neuro-Oncology 16 (3): 334–351.

Kaufmann, J. K., and E.A. 2014. Chiocca. Glioma virus therapies

between bench and bedside. Neuro-Oncology 16: 334–351.

Russell, S. J., K. W. Peng, and J. C. Bell. 2014. Oncolytic virotherapy.

Nat. Biotechnol. 30: 1–29.

Wollmann, G., K. Ozduman, and A. N. van den Pol. 2012. Oncolytic

virus therapy of glioblastoma multiforme – concepts and candidates.

Cancer J. 18 (1): 69–81.

Rubsam, L. Z., P. D. Boucher, P. J. Murphy, M. KuKuruga, and

D. S. Shewach. 1999. Cytotoxicity and accumulation of ganciclovir

triphosphate in bystander cells cocultured with herpes simplex virus

type 1 thymidine kinase-expressing human glioblastoma cells. Cancer

Res. 59: 669–675.

Beck, C., S. Cayeux, S. D. Lupton, B. Dörken, and T. Blankenstein.

The thymidine kinase/ganciclovir-mediated “suicide” effect is

variable in different tumor cells. Hum. Gene Ther. 6: 1525–1530.

Colombo, F., L. Barzon, E. Franchin, M. Pacenti, V. Pinna, D. Danieli,

M. Zanusso, and G. Palù. 2005. Combined HSV-TK/IL-2 gene therapy

in patients with recurrent glioblastoma multiforme: biological and

clinical results. Cancer Gene Ther. 12: 835–848.

Perry, J. R. 2012. Thromboembolic disease in patients with high-grade

glioma. Neuro-Oncology 14 (Suppl. iv): iv73–iv80.

De Cicco, M. 2004. The prothrombotic state in cancer: pathogenic

mechanisms. Crit. Rev. Oncol. Hematol. 50 (3): 187–196.

McKie, E. A., A. R. MacLean, A.D. Lewis, G. Cruickshank, R. Ram-

pling, S.C. Barnett, P.G. Kennedy, S.M. Brown. 1996. Selective in vitro

replication of herpes simplex virus type 1 (HSV-1) ICP34.5 null mutants

in primary human CNS tumours—evaluation of a potentially effective

clinical therapy. Br J Cancer 74 (5): 745–752.

Mineta, T., S. D. Rabkin, T. Yazaki, W. D. Hunter, R. L. Martuza. 1995.

Attentuated multi-mutated herpes simplex virus-1 for the treatment of

malignant gliomas. Nat. Med. 1 (9): 938–943.

Freeman, A. I., Z. Zakay-Rones, J. M. Gomori, E. Linetsky, L. Rasooly,

E. Greenbaum, S. Rozenman-Yair, A. Panet, E. Libson, C.S. Irving, E.

Galun, and T. Seigal. 2006. Phase I/II trial of intravenous NDV-HUJ

oncolytic virus in recurrent glioblastoma multiforme. Mol. Ther. 13:

–228.

Rainov, N.G. 2000. A Phase III Clinical evaluation of herpes sim-

plex virus type 1 thymidine kinase and ganciclovir gene therapy as

an adjuvant to surgical resection and radiation in adults with previ-

ously untreated glioblastoma multiforme. Hum. Gene Ther. 11 (17):

–2401.

Yla-Herttuala, M. W. S., J. Martin, P. Warnke, P.Menei, D. Eckland, J.

Kinley, R. Kay, and Z. Ram. 2013. Adenovirus-mediated gene therapy

with sitimagene ceradenovec followed by intravenous ganciclovir for

patients with operable high-grade gliomas (ASPECT): a randomised,

open-label, phase 3 trial. Lancet Oncol. 14 (9): 822–833.

Stupp, R., W. P. Mason, M. J. van den Bent, M. Weller, B. Fisher,

M.J.B. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn,

J. Curschmann, R. C. Janzer, S. K. Ludwin, T. Gorlia, A. Allgeier, D.

Lacombe, J. Gregory Cairncross, E. Eisenhauer, and R. O. Mirimanoff.

Radiotherapy plus concomitant and adjuvant temozolomide for

glioblastoma. N Eng. J. Med. 352: 987–996.

Barnett, S. C., L. Robertson, D. Graham, D. Allan, and R. Rampling.

Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells trans-

formed with c-myc and H-ras form high-grade glioma after stereotactic

injection into the rat brain. Carcinogenesis 19 (9): 1529–1537.

O’Neill, D. W., S. Adams, and N. Bhardwaj. 2004. Manipulating

dendritic cell biology for the active immunotherapy of cancer. Blood

(8): 2235–2246.

Ahmed, M. S., and Y. S. Bae. 2014. Dendritic cell-based therapeutic

cancer vaccines: past, present, and future. Clin. Exp. Vaccine 3 (2):

–116.

Schreiber R. D., L. J. Old, and M. J. Smyth. 2011. Cancer Immunoedit-

ing: Integrating immunity’s roles in cancer suppression and promotion.

Science 331 (6024): 1565–1570.

Fonteneau, J. F., M. Gilliet, M. Larsson, I. Dasilva, C. Munz, Y. J. Liu,

and N. Bhardwaj. 2003.Activation of influenza virus-specific CD4+ and

CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive

immunity. Blood 101 (9): 3520–3526.

Salio, M., M. Cella, W. Vermi, F. Facchetti, M. J. Palmowski, C. L.

Smith, D. Shepherd, M. Colonna, and V. Cerundulo. 2003. Plasmacytoid

dendritic cells prime IFN-gamma-secreting melanoma-specific CD8

lymphocytes and are found in primary melanoma lesions. Eur. J.

Immunol. 33: 1052–1062.

Eshhar, Z., T. Waks, G. Cross, and D. G. Schindler. 1993. Specific

activation and targeting of cytotoxiclymphocytes through chimeric

single chains consisting of antibody-binding domains and the y or

C subunits of the immunoglobulinand T-cell receptors. PNAS 90:

–724.

Miao, H., B. D. Choi, C. M. Suryadevara, L. Sanchez-Perez, S. Yang,

G. De Leon, E. J. Sayor, R. McLendon, J. E. Herndon II, P. Healy,

G. E. Archer, D. D. Binger, L. A. Johnson, and J. H. Sampson. 2014.

EGFRvIII-specific chimeric antigen receptor T cells migrate to and

kill tumor deposits infiltrating the brain parenchyma in an invasive

xenograft model of glioblastoma. PLos One 9 (4): 1–9.

Lee, D.W., D. M. Barrett, C. Mackall, R. Orentas, and S. A. Grupp.

The future is now: chimeric antigen receptors as new targeted

therapies for childhood cancer. CCR Focus 18 (10): 2780–2790.

Imai, C., K. Mihara, M. Andreansky, I. C. Nicholson, C. H. Pui, T. L.

Geiger, and D. Campana. 2004. Chimeric receptors with 4-1BB signal-

ing capacity provoke potent cytotoxicity against acute lymphoblastic

leukemia. Leukemia 18: 676–684.

Carpentino, C., M. C. Milone, R. Hassan, J. C. Simonet, M. Lakhal,

M. M. Suhoski, A. Varela-Rohena, K. M. Haines, D. F. Heitjan, S.

M. Albelda, R. G. Carroll, J. L. Riley, I. Pastan, and C. H. June.

Control of large, established tumor xenografts with genetically

retargeted human T cells containing CD28 and CD137 domains. PNAS

(9): 3360–3365.

Zhao, Y., Q. J. Wang, S. Yang, J. N. Kochenderfer, Z. Zheng, X. Zhong,

M. Sadelain, Z. Eshhar, S. A. Rosenberg, and R. A. Morgan. 2009.

A herceptin-based chimeric antigen receptor with modified signaling

domains leads to enhanced survival of transduced T lymphocytes and

antitumor activity. J. Immunol. 183 (9): 5563–5574.

Morgan, R. A. 2013. Risky business: target choice in adoptive cell

therapy. Blood 122 (20): 3392–3394.

Brentjens, R., R. Yeh, Y. Bernal, I. Riviere, and M. Sadelain. 2010.

Treatment of chronic lymphocytic leukemia with genetically targeted

autologous T cells: case report of an unforeseen adverse event in a phase

I clinical trial. Mol. Ther. 18 (4): 666–668.

Kochenderfer, J. N., M. E. Dudley, S. A. Feldman, W. H. Wilson, D.

E. Spaner, I. Maric, M. Stetler-Stevenson, G. Q. Phan, M. S. Hughes,

R. M. Sherry, J. C. Yang, U. S. Kammula, L. Devillier, R. Carpenter,

D. A. Nathan, R. A. Morgan, C. Laurencot, and S. A. Rosenberg. 2012.

B-cell depletion and remissions of malignancy along with cytokine-

associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-

receptor-transduced T cells. Blood 119 (12): 2709–2720.

Grupp, S. A., M. Kalos, D. Barrett, R. Aplenc, D. L. Porter, S. R.

Rheingold, D. T. Teachey, A. Chew, B. Hauck, J. Fraser Wright, M. C.

Milone, B. L. Levine, and C. H. June. 2013. chimeric antigen receptor-

modified t cells for acute lymphoid leukemia. N Engl. J. Med. 368 (16):

–1518.

Le Huu, D., T. Matsushita, G. Jin, Y. Hamaguchi, M. Hasegawa, K.

Takehara, and M. Fujimoto. 2012. IL-6 blockade attenuates the devel-

opment of murine sclerodermatous chronic graft-versus-host disease.

J. Invest. Dermatol. 132: 2752–2761.

Pule, M. A., B. Savoldo, G. D. Myers, C. Rossig, H. V. Russell, G. Dotti,

M. H. Huls, E. Liu, A. P. Gee, Z. Mei, E. Yvon, H. L. Weiss, H. Liu,

C. M. Rooney, H. E. Heslop, and M. K. Brenner. 2008. Virus-specific

T cells engineered to coexpress tumor-specific receptors: persistence

and antitumor activity in individuals with neuroblastoma. Nat. Med. 14

(11): 1264–1270.

Hatiboglu, M. A., J. Wei, A. S. G. Wu, and A. B. Heimberger. 2010.

Immune therapeutic targeting of glioma cancer stem cells. Target Oncol.

(3): 217–227.

Barkholt, L., E. Flory, V. Jekerle, S. Lucas-Samuel, P. Ahnert, L. Bisset,

D. Büscher, W. Fibbe, A. Foussat, M. Kwa, O. Lantz, R. Maˇciulaitis,

T. Palomäki, C. K. Schneider, L. Sensebé, G. Tachdjian, K. Tarte, L.

Tosca, and P. Salmikangas. 2013. Risk of tumorigenicity in mesenchy-

mal stromal cell-based therapies–bridging scientific observations and

regulatory viewpoints. Cytotherapy 15 (7): 753–759.

Harsh, G. R., T. S. Deisboeck, D. N. Loius, J. Hilton, M. Colvin, J. S.

Silver, N. H. Qureshi, J. Kracher, D. Finkelstein, E. A. Chiocca, and

F. H. Hochberg. 2000. Thymidine kinase activation of ganciclovir in

recurrent malignant gliomas: a gene-marking and neuropathological

study. J. Neurosurg. 92 (5): 804–811.

Smith, A.G. 2001. Embryo-derived stem cells: of mice and men. Annu.

Rev. Cell Dev. Biol. 17: 435–462.

Le Blanc, K., and M. F. Pittenger. 2005. Mesenchymal stem cells:

progress toward promise. Cytotherapy 7 (1): 36–45.

Tolar, J., A. J. Nauta, M. J. Osborn, A. P. Mortari, R. T. McElmurry, S.

Bell, L. Xia, N. Zhou, M. Riddle, T. M. Schroeder, J. J. Westendorf,

R. S. McIvor, P. C. W. Hogendoorn, K. Szuhai, L. Oseth, B. Hirsch, S.

R. Yant, M. A. Kay, A. Peister, D. J. Prockop, W. E. Fibbe, and B. R.

Blazar. 2007. Sarcoma derived from cultured mesenchymal stem cells.

Stem Cells 25: 371–379.

Atsma D. E., W. E. Fibbe, and T. J. Rabelink. 2007. Opportunities

and challenges for mesenchymal stem cell-mediated heart repair. Curr.

Opin. Lipidol. 18 (6): 645–649.

Solchaga, L. A., K. J. Penick, and J. F. Welter. 2011. Chondrogenic

differentiation of bone marrow-derived mesenchymal stem cells: Tips

and Tricks. Methods Mol. Biol. 698: 253–278.

Wei X., X. Yang, Z. P. Han, F. F. Qu, L. Shao, and Y. F. Shi. 2013.

Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol.

Sinica 34 (6): 747–754.

Ryan, J. M., F. P. Barry, J. M. Murphy, and B. P. Mahon. 2005.

Mesenchymal stem cells avoid allogeneic rejection. J. Inflam. 2: 8.

Medvedev, S. P., A. I. Shevchenk, and S. M. Zakian. 2010. Induced

pluripotent stem cells: problems and advantages when applying them

in regenerative medicine. ACTA NAT. 2 (5): 18–28.

Yamanaka, S. 2009. A FRESH Look at iPS cells. Cell 137 (1): 13–17.

Chan, T. M., J. Y. R. Chen, L. I. Ho, H. P. Lin, K. W. Hsueh, D. D. Liu,

Y. H. Chen, A. C. Hsieh, N. M. Tsai, D. Y. Hueng, S. T. Tsai, P. W. Chou,

S. Z. Lin, and H. J. Harn. 2014. ADSC Therapy in neurodegenerative

disorders. Cell Transplant. 23 (4–5): 549–557.

Desplats P., H. J. Lee, E. J. Bae, C. Patrick, E. Rockenstein, L. Crews,

B. Spencer, E. Masliah, and S. J. Lee. 2009. Inclusion formation and

neuronal cell death through neuron-to-neuron transmission of alpha-

synuclein. PNAS 106 (31): 13010–13015.

Sanberg, P. R., D. J. Eve, A. E. Willing, S. Garbuzova-Davis, J. Tan, C.

D. Sanberg, J. G. Allickson, E. L. Cruz, and C. V. Borlongan. 2011.

The treatment of neurodegenerative disorders using umbilical cord

blood and menstrual blood-derived stem cells. Cell Transplant. 20 (10):

–94.

Spinelli V., P. V. Guillot, and P. De Coppi. 2013. Induced pluripotent

stem (iPS) cells from human fetal stem cells (hFSCs). Organogenesis

(2): 101–110.

Broxmeyer, H. E. 2010. Umbilical cord transplantation: Epilogue.

Semin. Hematol. 47 (1): 97–103.

Altaner, C., V. Altanerova, M. Cihova, K. Ondicova, B. Rychly, L.

Baciak, and B. Mravec. 2014. Complete regression of glioblastoma

by mesenchymal stem cells mediated prodrug gene therapy simulating

clinical therapeutic scenario. International J. Cancer 134 (6): 1458–

Egleton, R. D., and T. P. Davis. 2005. Development of neuropeptide

drugs that cross the blood–brain barrier. NeuroRx 2 (1): 44–53.

Qin, J., X. Yang, J. Mi, J. Wang, J. Hou, T. Shen, Y. Li, B. Wang,

X. Li, and W. Zhu. 2014. Enhanced antidepressant-like effects of the

macromolecule trefoil factor 3 by loading into negatively charged

liposomes. Int. J. Nanomed. 9: 5247–5257.

Wang, X., P. Liu, W. Yang, L. Li, P. Li, Z. Liu, Z. Zhuo, and Y.

Gao. Microbubbles coupled to methotrexate-loaded liposomes for

ultrasound-mediated delivery of methotrexate across the blood–brain

barrier. Int. J. Med.; 9: 4899–4909.

Steiniger, S. C., J. Kreuter, A. S. Khalansky, I. N. Skidan, A. I.

Bobruskin, Z. S. Smirnova, S. E. Severin, R. Uhl, M. Kock, K. D.

Geiger, and S. E. Gelperina. Chemotherapy of glioblastoma in rats using

doxorubicin-loaded nanoparticles. Int. J. Cancer. 109 (5): 759–767.

Jones, A. R., and E. V. Shusta. 2007. Blood–Brain Barrier Transport of

Therapeutics via Receptor-Mediation. Pharm. Res. 24 (9): 1759–1771.

Pardridge, W. M. 2001. Brain Drug Targeting and Gene Technologies.

Jpn. J. Pharmacol. 87 (2): 97–103.

Wait, S. D., R. S. Prabhu, S. H. Burri, T. G. Atkins, and A. L. Asher.

Polymeric drug delivery for the treatment of glioblastoma. Neuro-

Oncology 17 (2): ii9–ii23.

Larsen, J.M., D. R. Martin, and M. E. Byrne. 2014. Recent advances

in delivery through the blood–brain barrier. Curr. Top. Med. Chem. 14

(9): 1148–1160.

Jewell, C.M., S. C. Bustamante Lopez, and D. J. Irvine. 2011. In

situ engineering of the lymph node microenvironment via intranodal

injection of adjuvant-releasing polymer particles. PNAS 108 (38):

–15750.

Burgess, A., C.A. Ayala-Grosso, M. Ganguly, J.F. Jordão, I. Aubert, K.

Hynynen. 2011. Targeted Delivery of Neural Stem Cells to the Brain

Using MRI-Guided Focused Ultrasound to Disrupt the Blood–Brain

Barrier. PLoS ONE 6 (11): e27877.

Balyasnikova, I. V., M. S. Prasol, S. D. Ferguson, Y. Han, A. U. Ahmed,

M. Gutova,A. L. Tobias, D. Mustafi, E. Rincon, L. Zhang, K. S.Aboody,

and M. S. Lesniak. 2014. Intranasal delivery of mesenchymal stem cells

significantly extends survival of irradiated mice with experimental brain

tumors. Mol. Ther. 22: 140–148.

Sampson, J. H., K. D. Alpade, G. E. Archer, A. Coan, A. Desjardins,

A. H. Friedman, H. S. Friedman, M. R. Gilbert, J. E. Herndon, R. E.

McLendon, D. A. Mitchell, D. A. Reardon, R. Sawaya, R. Schmittling,

W. Shi, J. J. Vredenburgh, D. D. Bigner, and A. B. Heimberger. 2011.

Greater chemotherapy-induced lymphopenia enhances tumor-specific

immune responses that eliminate EGFRvIII-expressing tumor cells in

patients with glioblastoma. Neuro-Oncology 13 (3): 324–333.

Phuphanich, S., C. J. Wheeler, J. D. Rudnick, M. Mazer, H. Q. Wang,

M. A. Nuno, J. E. Richardson, X. Fan, J. Ji, R.M. Chu, J. G. Bender, E.

S. Hawkins, C. G. Patil, K. L. Black, and J. S. Yu. 2013. Phase I trial

of a multi-epitope-pulsed dendritic cell vaccine for patients with newly

diagnosed glioblastoma. Cancer Immunol. Immunother. 62: 125–135.

Fadul, C. E., J. L. Fisher, T. H. Hampton, E. C. Lallana, Z. Li, J.

Gui, Z. M. Szczepiorkowki, T. D. Tosteson, C. H. Rhodes, H. A.

Wishart, L. D. Lewis, and M. S. Ernstoff. 2011. Immune response

in patients with newly diagnosed glioblastoma multiforme treated

with intranodal autologous tumor lysate-dendritic cell vaccination after

radiation chemotherapy. J. Immunother. 34 (4): 382–389.

Shand, N., F. Weber, L. Mariani, M. Bernstein, A. Gianella-Borradi,

Z. Long, A. G. Sorensen, and N. Barbier. 1999. A phase 1–2 clinical

trial of gene therapy for recurrent glioblastoma multiforme by tumor

transduction with the herpes simplex thymidine kinase gene followed

by ganciclovir. Hum. Gene Ther. 10 (14): 2325–2335.

Markert, J. M., P. G. Liechty, W. Wang, S. Gaston, E. Braz, M. Karrasch,

L. B. Nabors, M. Markiewicz, A. D. Lakeman, C. A. Palmer, J. N.

Parker, R. J. Whitley, G. Y. Gillespie. 2009. Phase Ib trial of mutant

herpes simplex virus G207 inoculated pre-and post-tumor resection for

recurrent GBM. Mol. Ther. 17 (1): 199–207.

Downloads

Published

2015-10-30

How to Cite

Aleynik, A., & Rameshwar, P. (2015). Stem Cell Therapy for Brain Tumors. International Journal of Translational Science, 2015, 67–106. https://doi.org/10.13052/ijts2246-8765.2015.005

Issue

Section

Articles

Most read articles by the same author(s)