Block-Hash Signature (BHS) for Transaction Validation in Smart Contracts for Security and Privacy using Blockchain
DOI:
https://doi.org/10.13052/jmm1550-4646.1941Keywords:
Digital signature, Blockchain Security, Hyperledger Fabric, Smart ContractAbstract
Some of the well-known signature techniques like Winternitz and Lamport are not considered to be very appropriate for the usage of hashing or smart contracts in Blockchains security because of their size O(n2), which is prominently too high. Although in Blockchain, the security concern is on the top priority because of its distributed P2P design still, the security enhancement is required to sign and verify the documents forwarded to the peers, especially in Hyperledger Fabric. Here, this paper presents a new signature technique “Block-Hash” to enhance Blockchain security by using it in smart contracts as well as hashing with size 3Xn bits (n=256, generally for SHA-256 Hashing) and which can score 112 bits security. The proposed signature can be used appropriately for signing a smart contract by the endorser or committer node. Also, it can be used with a hash algorithm in forming a Merkle tree. Apart from the description and implementation of Block-Hash Signature, this paper has covered the analysis of its security and correctness measures with a table for result comparison.
Downloads
References
Ekblaw, A. Azaria, J.D. Halamka, A. Lippman, “A case study for blockchain in healthcare: medrec prototype for electronic health records and medical research data”, 2016. URL: https://www.media.mit.edu/publications/medrecwhitepaper/.
S. Huckle, R. Bhattacharya, M. White, N. Beloff, “Internet of things, blockchain and shared economy applications”, Proc. Comput. Sci. 98 (2016) 461–466.
A. Dorri, S.S. Kanhere, R. Jurdak, P. Gauravaram, “Blockchain for iot security and privacy: The case study of a smart home”, in: IEEE Percom Workshop on Security Privacy and Trust in the Internet of Thing, 2017.
Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, Qiaoyan Wen, “A survey on the security of blockchain systems”, https://doi.org/10.1016/j.future.2017.08.020, Volume 107, June 2020.
P. Bailis, A. Narayanan, A. Miller, and S. Han, “Research for practice: Cryptocurrencies, blockchains, and smart contracts; hardware for deep learning,” Commun. ACM, vol. 60, no. 5, pp. 48–51, 2017.
BlockGeeks. (2017). 17 blockchain applications that are transforming society. [Online]. Available: https://blockgeeks.com/guides/blockchain-applications/
Y. Yuan and F. Wang, “Blockchain and Cryptocurrencies: Model, Techniques, and Applications,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48, pp. 1421–1428, (2018).
M. Crosby, Nachiappan, P. Pattanayak, S. Verma, and V. Kalyanaraman, “BlockChain Technology: Beyond Bitcoin,” Applied Innovation Review, 6, pp. 1–16, (2016).
Y. Zhang, J. Wen, The IoT electric business model: Using blockchain technology for the internet of things, Peer-to-Peer Netw. Appl. (2016) 1–12.
J. Sun, J. Yan, K.Z. Zhang, Blockchain-based sharing services: What blockchain technology can contribute to smart cities, Financ. Innov. (2016) 26.
X. Xu, C. Pautasso, L. Zhu, V. Gramoli, A. Ponomarev, A.B. Tran, S. Chen, The blockchain as a software connector, in: The 13th Working IEEE/IFIP Conference on Software Architecture, WICSA, 2016.
E. Nordström, Personal Clouds: Concedo (Master’s thesis), Lulea University of Technology, 2015.
J.S. Czepluch, N.Z. Lollike, S.O. Malone, The use of block chain technology in different application domains, in: The IT University of Copenhagen, 2015, Copenhagen.
Ethereum, Etherscan: The ethereum block explorer, 2017. URL https://www.ethereum.org/.
L. Luu, D.-H. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts smarter, in: The 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016, pp. 254–269.
V. Buterin, Critical update re: Dao vulnerability, 2016. URL https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/.
J. Adelstein, Behind the biggest bitcoin heist in history: Inside the implosion of mt.gox, 2016. URL http://www.thedailybeast.com/articles/2016/05/19/behind-the-biggest-bitcoin-heist-in-history-inside-the-implosion-of-mt-gox.html.
N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum smart contracts (sok), in: international Conference on Principles of Security and Trust, 2017, pp. 164–186.
Z. Zheng, S. Xie, H.-N. Dai, H. Wang, Blockchain challenges and opportunities: A survey, Internat. J. Web Grid Serv. (2016).
Shuai Wang, Liwei Ouyang, Yong Yuan, Senior Member, IEEE, Xiaochun Ni, Xuan Han, and Fei-Yue Wang, “Blockchain-Enabled Smart Contracts: Architecture, Applications, and Future Trends”, IEEE Transactions on Systems, Man, and Cybernetics: Systems (Volume: 49, Issue: 11, Nov. 2019), DOI: 10.1109/TSMC.2019.2895123.
Jing Liu and Zhentian Liu, “A Survey on Security Verification of Blockchain Smart Contracts” IEEE Access (Volume: 7), DOI: 10.1109/ACCESS.2019.2921624.
Alboaie, S., Cosovan, D., Chiorean, L., Vaida, M.F.: Lamport n-time signature scheme. In: 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6 (May 2018).
AlTawy, R., Gong, G., He, M., Mandal, K., Rohit, R.: SPIX: an authenticated cipher round 2 candidate to the NIST LWC competition (2019).
Altawy, R., Rohit, R., He, M., Mandal, K., Yang, G., Gong, G.: SLISCP-light: towards hardware optimized sponge-specifific cryptographic permutations. ACM Trans. Embed. Comput. Syst. 17(4), 81:1–81:26 (2018).
Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-515
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: ECRYPT Hash Workshop, vol. 2007. Citeseer (2007).
Bindel, N., et al.: Submission to NIST’s post-quantum project: lattice-based digital signature scheme qTESLA (2018).
Bosmans, J., Roy, S.S., Jarvinen, K., Verbauwhede, I.: A tiny co-processor for elliptic curve cryptography over the 256-bit NIST prime field. In: 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID), pp. 523–528 (January 2016).
Buchmann, J., García, L.C.C., Dahmen, E., D¨oring, M., Klintsevich, E.: CMSS – an improved merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006). https://doi.org/10.1007/1194137825.
Butin, D.: Hash-based signatures: state of play. IEEE Secur. Priv. 15(4), 37–43 (2017).
Chalkias, K., Brown, J., Hearn, M., Lillehagen, T., Nitto, I., Schroeter, T.: Blockchained post-quantum signatures. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1196–1203 (July 2018).
Chalkias, K., Brown, J., Hearn, M., Lillehagen, T., Nitto, I., Schroeter, T.: Blockchained post-quantum signatures. IACR Cryptol. ePrint Arch. 2018, 658 (2018).
Cruz, J.P., Yatani, Y., Kaji, Y.: Constant-sum fifingerprinting for Winternitz one time signature. In: 2016 International Symposium on Information Theory and its Applications (ISITA), pp. 703–707 (October 2016).
Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption Standard. Springer, Berlin (2013). https://doi.org/10.1007/978-3-662-04722-4
Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart, N.P.(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005). https://doi.org/10.1007/115868218.
Kumar, Pravin, Dayal, Mohit, Khari, Manju, Fenza, Giuseppe, Gallo, Mariacristina, “NSL-BP: A Meta Classifier Model Based Prediction of Amazon Product Reviews”, International Journal of Interactive Multimedia & Artificial Intelligence. June 2021, Vol. 6 Issue 6, pp. 95–103. 9p.
Radhika Saini, Manju Khari, “Defining Malicious Behavior of a Node and its Defensive Techniques in Ad Hoc Networks”, International Journal of Smart Sensors and Ad Hoc Networks (IJSSAN) Volume-1, Issue-1, 2011.
M. Khari, A. K. Garg, A. H. Gandomi, R. Gupta, R. Patan and B. Balusamy, “Securing Data in Internet of Things (IoT) Using Cryptography and Steganography Techniques,” in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 1, pp. 73–80, Jan. 2020, doi: 10.1109/TSMC.2019.2903785.
N. Singh, M. Dayal, R. S. Raw and S. Kumar, “SQL injection: Types, methodology, attack queries and prevention,” 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2016, pp. 2872–2876.
K. S. Sahoo et al., “An Evolutionary SVM Model for DDOS Attack Detection in Software Defined Networks,” in IEEE Access, vol. 8, pp. 132502–132513, 2020, doi: 10.1109/ACCESS.2020.3009733.
Mohit Dayal and Bharti Nagpal, “A compendious investigation of Android malware family”, International Journal of Information Privacy, Security and Integrity-2016, doi: 10.1504/IJIPSI.2016.082127.
Chitrangada Chaubey and Swapnil Raj and Suresh Kaswan, “Security and Privacy Issues in Location Dependent Services for Mobile Communication: A Synergistic Review”, IOP Conf. Ser.: Mater. Sci. Eng. 1149 012007, doi: 10.1088/1757-899x/1149/1/012007.
Faisal Jamil, Muhammad Ibrahim, Israr Ullah, Suyeon Kim, Hyun Kook Kahng, Do-Hyeun Kim, Optimal smart contract for autonomous greenhouse environment based on IoT blockchain network in agriculture, Computers and Electronics in Agriculture, Volume 192, 2022, 106573, ISSN 0168-1699, https://doi.org/10.1016/j.compag.2021.106573.
John, A., Reji, A., Manoj, A.P., Premachandran, A., Zachariah, B., Jose, J. (2022), “A Novel Hash Function Based on Hybrid Cellular Automata and Sponge Functions”, In: Das, S., Martinez, G.J. (eds) Proceedings of First Asian Symposium on Cellular Automata Technology. ASCAT 2022. Advances in Intelligent Systems and Computing, vol. 1425. Springer, Singapore. https://doi.org/10.1007/978-981-19-0542-1_16.
Grech, A., Camilleri, A.F.: Blockchain in Education. JRC Science for Policy Report, European Commission (2017).
Mezhuyev, V., Al-Emran, M., Fatehah, M., Hong, N.C.: Factors affecting the meta modelling acceptance: a case study from software development companies in Malaysia. IEEE Access. 10(6), 49476–49485 (2018).
Kumar, Nishant, et al. “Blockchain Adoption for Provenance and Traceability in the Retail Food Supply Chain: A Consumer Perspective.” IJEBR vol. 18, no. 2, 2022: pp. 1–17. http://doi.org/10.4018/IJEBR.294110.
Kumar, N., Singh, M., Upreti, K., Mohan, D. (2022). Blockchain Adoption Intention in Higher Education: Role of Trust, Perceived Security and Privacy in Technology Adoption Model. In: Al-Emran, M., Al-Sharafi, M.A., Al-Kabi, M.N., Shaalan, K. (eds) Proceedings of International Conference on Emerging Technologies and Intelligent Systems. ICETIS 2021. Lecture Notes in Networks and Systems, vol. 299. Springer, Cham. https://doi.org/10.1007/978-3-030-82616-1_27.
Kumar, N., Upreti, K., Upreti, S., Shabbir Alam, M., & Agrawal, M. (2021). Blockchain integrated flexible vaccine supply chain architecture: Excavate the determinants of adoption. Human Behavior and Emerging Technologies, 3(5), 1106– 1117. https://doi.org/10.1002/hbe2.302.