Deep Dive Into Diabetic Retinopathy Identification: A Deep Learning Approach with Blood Vessel Segmentation and Lesion Detection
DOI:
https://doi.org/10.13052/jmm1550-4646.20210Keywords:
Deep learning, diabetic retinopathy, lesions, soft exudates, hemorrhages, microaneurysmsAbstract
In the landscape of diabetes-related ocular complications, diabetic retinopathy stands as a formidable challenge, reigning as the leading cause of vision impairment worldwide. Despite extensive research, the quest for effective treatments remains an ongoing pursuit. This study explores the burgeoning domain of AI-driven approaches in ocular research, particularly focusing on diabetic retinopathy detection. It delves into various diagnostic methodologies, encompassing the detection of microaneurysms, identification of hemorrhages, and segmentation of blood vessels, primarily utilizing retinal fundus photographs. Our findings juxtapose conventional machine learning techniques against deep neural networks, showcasing the remarkable efficacy of Convolutional neural network (CNN) and Random Forest (RF) in segmenting blood vessels and the robustness of deep learning in lesion identification. As we navigate the quest for clearer vision, artificial intelligence takes center stage, promising a transformative leap forward in the realm of vision care.
Downloads
References
Bidwai P, Gite S, Pahuja K, Kotecha K. A Systematic Literature Review on Diabetic Retinopathy Using an Artificial Intelligence Approach. Big Data and Cognitive Computing. 2022; 6(4):152. https://doi.org/10.3390/bdcc6040152.
Wejdan L. Alyoubi, Wafaa M. Shalash, Maysoon F. Abulkhair, Diabetic retinopathy detection through deep learning techniques: A review, Informatics in Medicine Unlocked, Volume 20, 2020, 100377, ISSN 2352-9148, https://doi.org/10.1016/j.imu.2020.100377.
Kusuhara, Sentaro, Fukushima, Yoko, Ogura, Shuntaro, Inoue, Naomi, Uemura, Akiyoshi. (2018). Pathophysiology of Diabetic Retinopathy: The Old and the New. Diabetes & Metabolism Journal. 42. 364. doi: 10.4093/dmj.2018.0182.
S. Qummar et al., “A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection,” in IEEE Access, vol. 7, pp. 150530–150539, 2019, doi: 10.1109/ACCESS.2019.2947484.
Nakayama Luis Filipe, Ribeiro Lucas Zago, Malerbi Fernando Korn, Regatieri Caio Vinicius Saito, Ophthalmology and Artificial Intelligence: Present or Future? A Diabetic Retinopathy Screening Perspective of the Pursuit for Fairness, Frontiers in Ophthalmology, 2, 2022. 2674-0826, doi: 10.3389/fopht.2022.89818. https://www.frontiersin.org/articles/10.3389/fopht.2022.898181.
Varma, R., Bressler, N. M., Doan, Q. V., Danese, M., Dolan, C. M., Lee, A., and Turpcu, A. (2015). Visual impairment and blindness avoided with ranibizumab in Hispanic and non-Hispanic whites with diabetic macular edema in the United States. Ophthalmology, 122(5), 982–989.
Mehta, H., Tufail, A., Daien, V., Lee, A. Y., Nguyen, V., Ozturk, M., …and Gillies, M. C. (2018). Real-world outcomes in patients with neovascular age-related macular degeneration treated with intravitreal vascular endothelial growth factor inhibitors. Progress in retinal and eye research, 65, 127–146.
Abràmoff, M. D., Folk, J. C., Han, D. P., Walker, J. D., Williams, D. F., Russell, S. R., …and Niemeijer, M. (2013). Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA ophthalmology, 131(3), 351–357.
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., …and Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. jama, 316(22), 2402–2410.
Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., …and Zhang, K. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. cell, 172(5), 1122–1131.
W. M. Gondal, J. M. Köhler, R. Grzeszick, G. A. Fink and M. Hirsch, “Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images”, Proc. IEEE Int. Conf. Image Process. (ICIP), pp. 2069–2073, Sep. 2017.
Z. Wang, Y. Yin, J. Shi, W. Fang, H. Li and X. Wang, “Zoom-in-net: Deep mining lesions for diabetic retinopathy detection” in Int. Conf. Med. Image Comput. Comput.-Assist. Intervent, Berlin, Germany:Springer, pp. 267–275, 2017.
T. Chandrakumar and R. Kathirvel, “Classifying diabetic retinopathy using deep learning architecture”, Int. J. Eng. Res. Technol., vol. 5, no. 6, pp. 19–24, Jun. 2016.
H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding and Y. Zheng, “Convolutional neural networks for diabetic retinopathy”, Procedia Comput. Sci., vol. 90, pp. 200–205, Jan. 2016.
Y. Yang, T. Li, W. Li, H. Wu, W. Fan and W. Zhang, “Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks”, Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent, pp. 533–540, 2017.
Shu-I Pao, Hong-Zin Lin, Ke-Hung Chien, Ming-Cheng Tai, Jiann-Torng Chen, Gen-Min Lin, “Detection of Diabetic Retinopathy Using Bichannel Convolutional Neural Network”, Journal of Ophthalmology, vol. 2020, Article ID 9139713, 7 pages, 2020. https://doi.org/10.1155/2020/9139713.
Gao Jinfeng, Sehrish Qummar, Zhang Junming, Yao Ruxian, Fiaz Gul Khan, “Ensemble Framework of Deep CNNs for Diabetic Retinopathy Detection”, Computational Intelligence and Neuroscience, vol. 2020, Article ID 8864698, 11 pages, 2020. https://doi.org/10.1155/2020/8864698.
Muhammad Mateen, Junhao Wen, Nasrullah Nasrullah, Song Sun, Shaukat Hayat, “Exudate Detection for Diabetic Retinopathy Using Pretrained Convolutional Neural Networks”, Complexity, vol. 2020, Article ID 5801870, 11 pages, 2020. https://doi.org/10.1155/2020/5801870.
D. Siva Sundhara Raja, S. Vasuki, “Automatic Detection of Blood Vessels in Retinal Images for Diabetic Retinopathy Diagnosis”, Computational and Mathematical Methods in Medicine, vol. 2015, Article ID 419279, 12 pages, 2015. https://doi.org/10.1155/2015/419279.
Nagaraja Gundluru, Dharmendra Singh Rajput, Kuruva Lakshmanna, Rajesh Kaluri, Mohammad Shorfuzzaman, Mueen Uddin, Mohammad Arifin Rahman Khan, “Enhancement of Detection of Diabetic Retinopathy Using Harris Hawks Optimization with Deep Learning Model”, Computational Intelligence and Neuroscience, vol. 2022, Article ID 8512469, 13 pages, 2022. https://doi.org/10.1155/2022/8512469.
Gupta, Ankita and Chhikara, Rita. (2018). Diabetic Retinopathy: Present and Past. Procedia Computer Science. 132. 1432–1440. doi: 10.1016/j.procs.2018.05.074.
Wang, Shuangling, et al. (2015) “Hierarchical retinal blood vessel segmentation based on feature and ensemble learning.” Neurocomputing 149: 708–717.
Liskowski, Paweł, and Krzysztof Krawiec.(2016) “Segmenting retinal blood vessels with deep neural networks.” IEEE transactions on medical imaging 35(11): 2369–2380.
Lupascu, Carmen Alina, Domenico Tegolo, and Emanuele Trucco. (2010) “FABC: retinal vessel segmentation using AdaBoost.” IEEE Transactions on Information Technology in Biomedicine 14(5): 1267–1274.
Odstrcilik, Jan, et al. (2013) “Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database.” IET Image Processing 7(4): 373–383.
Fraz, Muhammad Moazam, et al. (2012) “An ensemble classification-based approach applied to retinal blood vessel segmentation.” IEEE Transactions on Biomedical Engineering 59(9): 2538–2548.
Antal, Bálint, and András Hajdu. (2014) “An ensemble-based system for automatic screening of diabetic retinopathy.” Knowledge-based systems 60: 20–27.
Abràmoff, Michael David, et al. (2016) “Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning.” Investigative ophthalmology & visual science 57(13): 5200–5206.
Singh, Anju, Singh, Divakar, Sharma, Shikha, Upreti, Kamal, Maheshwari, Manish, Mehta, Vimal, Sharma, Jitender, Mehra, Pratishtha and Dabla, Pradeep. (2022). Discovering Patterns of Cardiovascular Disease and Diabetes in Myocardial Infarction Patients Using Association Rule Mining. Folia Medica Indonesiana. 58. 242–250. doi: 10.20473/fmi.v58i3.34975.
Roychowdhury, Sohini, Dara D. Koozekanani, and Keshab K. Parhi. (2014) “Dream: Diabetic retinopathy analysis using machine learning.” IEEE journal of biomedical and health informatics 18(5): 1717–1728.
Kapoor, Anmol, Kapoor, Shreya, Upreti, Kamal, Singh, Prashant, Kapoor, Seema, Alam, Mohammad, and Nasir, Mohammad. (2023). Cardiovascular Disease Prognosis and Analysis Using Machine Learning Techniques. doi: 10.1007/978-3-031-25088-0_15.
Singh, Anju, Singh, Divakar, Sharma, Shikha, Upreti, Kamal, Maheshwari, Manish, Mehta, Vimal, Sharma, Jitender, Mehra, Pratishtha, Dabla, Kumar and Dabla, Pradeep. (2022). Original Research Report Discovering Patterns of Cardiovascular Disease and Diabetes in Myocardial Infarction Patients using Association Rule Mining. 242–250. doi: 10.20473/fmi.v58i3.34975.
Rakhlin, Alexander. (2018). Diabetic Retinopathy detection through integration of Deep Learning classification framework. doi: 10.1101/ 225508.
S. Qummar et al., “A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection,” in IEEE Access, vol. 7, pp. 150530–150539, 2019, doi: 10.1109/ACCESS.2019.2947484.