Damaged behavior under plane stress
DOI:
https://doi.org/10.13052/EJCM.20.341-368Keywords:
viscoplasticity, damage, plane stress, numerical integrationAbstract
This paper deals with the numerical treatment of "advanced" elasto-viscoplasticdamage constitutive equations in the particular case of plane stress. The viscoplastic constitutive equations account for the mixed isotropic and kinematic non linear hardening and are fully coupled with the isotropic ductile damage. The viscous effect is indifferently described by a power function (Norton type) or an hyperbolic sine function. Different time integration schemes are used and compared to each other assuming plane stress condition, widely used when dealing with shell structures as well as to the 3D reference case.
Downloads
References
Aravas N., “ On the numerical integration of a class of pressure dependent plasticity models”,
Int. J. Numer. Meth. Engng., vol. 24, p. 1395-1416, 1987.
Aravas N., Aifantis E., “ On the Geometry of Slip and Spin in Finite Plastic Deformation”, Int.
J. of Plasticity, vol. 7, p. 141-160, 1991.
Badreddine H., Elastoplasticité anisotrope endommageable en grandes déformations : aspects
théoriques, numériques et applications, PhD thesis, Université de Technologie de Troyes,
École Nationale d’Ingénieurs de Monastir, 2006.
Belytschko T., Liu W., Moran B., Nonlinear finite elements for continua and structures, John
Wiley, New York, 2000.
Besson J., Foerch R., “ Large scale object-oriented finite element code design”, Comput. Methods
Appl. Mech. Engrg., vol. 142, p. 165-187, 1997.
Chaboche J., “ A review of some plasticity and viscoplasticity constitutive theories”, Int. J. of
Plasticity, 2007.
Crisfield M., Non-linear Finite Element Analysis of Solids and Structures, vol. 1-2, John Wiley,
New York, 1991.
De Borst R., “ The zero-normal-stress condition in plane stress and shell elastoplasticity”,
Comm. Appl. Num. Meth, vol. 7, p. 29-33, 1991.
Dodds R. H., “ Numerical techniques for plasticity computations in finite element analysis”,
Computers and Structures, vol. 26 n 5, p. 767-779, 1987.
Doghri I., Mechanics of Deformable Solids, Springer-Verlag, Berlin, 2000.
Doghri I., Billardon R., “ Investigation of localization due to damage in elasto-plastic materials”,
Mechanics of Materials, vol. 19, p. 129-149, 1995.
Dogui A., Plasticité anisotrope en grandes déformations, PhD thesis, Université Claude
Bernard, Lyon, 1989.
Fuschi P., Peric D., Owen D., “ Studies on generalized mid point integration in rate-independent
plasticity with reference to a plane stress J2-flow theory”, Computers and Structures, vol.
, p. 1117-1133, 1992.
Hammi Y., Simulation numérique de l’endommagement des procédés de mise en forme, PhD
thesis, Université de Technologie de Compiègne, 2000.
Ibrahimbegovic A., Mécanique non linéaire des solides déformables : formulation théorique et
résolution numérique par éléments finis, Hermès science, 2006.
Kumar P., Nukala V., “ A return mapping algorithm for cyclic viscoplastic constitutive models”,
Comput. Methods Appl. Mech. Engrg., vol. 195, p. 148-178, 2005.
Lee J., Fenves G., “ A return-mapping algorithm for plastic-damage models: 3-D and plane
stress formulation”, Int. J. Numer. Methods Engrg, vol. 50, p. 487-506, 2001.
Lee S., Yoon M., Yang D., “ A stress integration algorithm for plane stress elastoplasticity
and its application to explicit finite element analysis of sheet metal forming processes”,
Computers and Structures, vol. 66, p. 301-311, 1998.
Lemaître J., Chaboche J., Mécanique des matériaux solides, Dunod, France, 1985.
Lestriez P., Modélisation numérique du couplage thermomécanique endommagement en transformations
finies: Application à la mise en forme, PhD thesis, Université de Technologie
de Troyes, 2003.
Lestriez P., Saanouni K., Mariage J., Cherouat A., “ Numerical prediction of damage in metal
forming process including thermal effects”, Int. J. of Damage Mechanics, vol. 13, p. 59-80,
Millard A., “ Numerical algorithms for plane stress elastoplasticity: review and recommendation”,
Computational Plasticity 4th Int. Conf., p. 237-247, 1995.
Montans F., “ Implicit plane stress algorithm for multilayer J2-plasticity using the Prager-
Ziegler translation rule”, Int. J. Numer. Meth. Engng, vol. 59, p. 409-418, 2004.
Ortiz M., Simo J., “ Analysis of a new class of integration algorithms for elastoplastic constitutive
relations”, Int. J. Num. Meth. Engng., vol. 23 n3, p. 353-366, 1986.
Paris T., Modélisation du comportement mécanique des liaisons soudées hétérogènes Ta/TA6V
: Comportement et critère de rupture., PhD thesis, Université de Technologie de Troyes,
Saanouni K., Chaboche J., “ Computational damage mechanics. Application to metal forming,
Numerical and Computational methods”, Elsevier Oxford, vol. 3, n 7, p. 321-376, 2003.
Saanouni K., Forster C., BenHatira F., “ On the inelastic flow with damage”, Int. J. Damage
Mech, vol. 3, n 2, p. 140-169, 1994.
Sawyer J., Wang C., Jones R., “ An implicit algorithm using explicit correctors for the kinematic
hardening model with multiple back stresses”, Int. J. Numer. Methods Engrg, vol. 50,
p. 2093-2107, 2001.
Simo J., Govindjee S., “ Exact closed-form solution of the return mapping algorithm in plane
stress elasto-viscoplasticity”, Eng. Comput., vol. 5, p. 254-258, 1988.
Simo J., Hughes T., Computational Inelasticity, Springer Verlag, 1997.
Simo J., Taylor R., “ A return mapping algorithm for plane stress elastoplasticity”, Int. J. Num.
Meth. Engng., vol. 22, p. 649-670, 1986.
Singh n. A., Pandey P., “ An implicit integration algorithm for plane stress damage coupled
elastoplasticity”, Mechanics Research Communications, vol. 26, p. 693-700, 1999.
Valoroso N., Rosati L., “ Consistent derivation of the constitutive algorithm for plane stress
isotropic plasticity. Part I Theoretical formulation”, International Journal of Solids and
Structures, vol. 46, p. 74-91, 2009a.
Valoroso N., Rosati L., “ Consistent derivation of the constitutive algorithm for plane stress
isotropic plasticity. Part II Computational issues”, International Journal of Solids and Structures,
vol. 46, p. 92-124, 2009b.
Walker K., Freed A., “ Asymptotic Integration Algorithms for Nonhomogeneous, Nonlinear,
First Order, Ordinary Differential Equations”, Engineering Science Software, NASA Technical
Memorandum, 1991.
Waltz G., Hornberger K., Stamm H., “ An implicit integration algorithm for plane stress viscoplastic
constitutive equations”, Computers and Structures, vol. 3, p. 539-546, 1990.