Numerical aspects of fini te elastoplasticity with isotropie ductile damage for metal forming

Authors

  • Khémais Saanouni Université de Technologie de Troyes, GSM!IASMIS 12, rue Marie Curie BP 2060 F-10010 Troyes Cedex
  • Abdelhakim Cherouat Université de Technologie de Troyes, GSM!IASMIS 12, rue Marie Curie BP 2060 F-10010 Troyes Cedex
  • Youssef Hammi Université de Technologie de Troyes, GSM!IASMIS 12, rue Marie Curie BP 2060 F-10010 Troyes Cedex

Keywords:

Finite elastoplasticity, ductile damage, stress computation, consistent tangent operator, finite elements, numerical simulation, metal forming

Abstract

This work is devoted to the study of an efficient numerical algorithm for evaluating damaged-plastic response of a material submitted to large plastic deformations. Fully coupled constitutive equations accounting for bath combined isotropie and kinematic hardening as weil as the ductile damage are formulated in the framework of Continuum Damage Mechanics (CDM). The associated numerical aspects conceming bath the local integration of the coupled constitutive equations and the (global) equilibrium integration schemes are presented and implemented into a general purpose Finite Element code (ABAQUS). For the local integration of the Jully coupled constitutive equations an efficient implicit and asymptotic scheme is used. Special care is given to the consistent tangent stiffness mat rix derivation as weil as to the reduction of the number of constitutive equations. Sorne numerical results are presented to show the numerical performance of the proposed stress calculation algorithm and the capability of the approach to predict the damage initiation and growth during a given metalforming process.

Downloads

Download data is not yet available.

References

[ARA 86] ARA VAS N., «The Analysis of Void Growth that Leads to Central Burst During

Extrusion>>, J. Mech. Phys. Solids, 34, p. 55-79, 1986.

[BON 91] BONTCHEVA N. and IANKOV R., << Numerical Investigation of the Damage Process

in Metal Forming >>, Eng. Frac. Mech., 40, p. 387-393, 1991.

[BRU 96) BRUNET M., SABOURIN F. and MGUIL-TOUCHAL S., <

and Failure in 3D Sheet Forming Analysis Using Damage Variable>>, Journal de

Physique IJI, 6, p. 473-482, 1996.

[CHA 78] CHABOCHE, J.L., Description Thermodynamique et Phénoménologique de la

viscoplasticité cyclique avec endommagement, Thèse de doctorat, Uni v. Paris VI, 1978.

[CHA 96] CHABOCHE J.L. et GAILLETAUD G., "Integration methods for complex plastic

constitutive equations", Comput. Methods Appt. Mech. Eng., 133, p. 125-155, 1996.

[DOG 89] DoGUI, A., Plasticité anisotrope en grandes déformations, Thèse de doctorat èssciences,

Université de Claude Bernard, Lyon 1, 1989.

[DOG 93] DoGHRI I., "Fully implicit integration and consistent tangent modulus in elastoplasticity",

/nt. J. Numer. Methods Eng., 36, p. 3915-3932, 1993.

[FRE 86] FREED A.D., WLKER K. P., "Exponential integration algorithm applied to viscoplasticity",

NASA TM 104461, 3nJ /nt. Conf On Comput Plasticity, Barcelona, 1992.

[GEL 85] GELIN J.C., ÜUDIN J. and RAVALARD Y.,<< An Imposed Finite Element Method for

the Analysis of Damage and Ductile Fracture in Cold Metal Forming Processes >>, Annals

ofthe CIRP, 34(1), p. 209-213, 1985.

[HAL 75] HALPHEN B., NGUYEN Q. S., "Sur les matériaux standards généralisés", Journal de

Mécanique, 14 (39), 1975.

[HAM 00] HAMM! Y., Simulation numérique de l'endommagement dans les procédés de mise

en forme, Thèse de doctorat, Université de Technologie de Troyes, Avril 2000.

[HAR 93] HARTMANN S., HAUPT P., "Stress computation and consistent tangent operator

using nonlinear kinematic hardening models", /nt. J. Numer. Methods. Eng., 36, p. 3801-

, 1993.

[LEM 85] LEMAITRE J. and CHABOCHE J.L., Mécanique des Milieux Solides, Dunod, Paris,

French edition 1985, Cambridge Univ. Press, English edition, 1990.

[LEM 92] LEMAITRE J., A course on Damage Mechanics, Springer Verlag, 1992.

[MAT 87] MATHUR K. and DAWSON P .. Damage Evolution Modeling in Bulk Forming

Processes, Computational Methods for Predicting Material Processing Defects, Edt;

Predeleanu, Elsevier. 1987.

[NAG 82] NAGTEGAAL J. C.. "On the implementation of inelastic constitutive equations with

special reference to large deformation problems", Comput. Methods Appt. Mech. Eng., 33

(1982). p. 494-484.

[ONA 88] 0NATE E. and KLEIBER M., <

Metal - Applications to Axisymmetric Sheet Forming Problem >>, /nt. J. Num. Meth. ln

Engng. 25, p. 237-251. 1988.

[SAA 94] SAANOUNI K., FORSTER C. and BEN HA TIRA F., «On the Anelastic Flow with

Damage>>, /nt. J. Dam. Mech., 3, p. 140-169, 1994.

[SAA 99] SAANOUNI K. and FRANQUEVILLE Y., « Numerical Prediction of Damage During

Metal Forming Processes >>, Numisheet 99, Besançon, September, France, p. 13-17, 1999.

[SAA 00] SAANOCNI K., NESNAS K. and HAMMI Y., «Damage modelling in metal forming

processes >>, /nt. J. of Damage Mechanics, Vol 9, no 3, p. 196-240, July 2000.

[SAA 00] SAANOUNI K., HAMMI Y., « Numerical simulation of damage in metal forming

processes >>, in Continuous Damage and Fracture, Editor A. Benallal, Elsevier, p. 353-

,2000.

[SIM 85] SIMO J.C., TAYLOR R., "Consistent tangent operators for rate independent

elastoplasticity", Comput. Methods Appt. Mech. Eng., 48 (1985), p. 101-118.

[ZHU 92] ZHU Y. Y., CESCOTTO S. and HABRAKEN A.M., «A Fully Coupled Elastoplastic

Damage Modeling and Fracture Criteria in Metal forming Processes >>, J. Met. Proc.

Tech., 32, p. 197-204, 1992.

Downloads

Published

2001-11-22

How to Cite

Saanouni, K. ., Cherouat, A. ., & Hammi, Y. . (2001). Numerical aspects of fini te elastoplasticity with isotropie ductile damage for metal forming. European Journal of Computational Mechanics, 10(2-4), 327–351. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2757

Issue

Section

Original Article