Numerical investigations of fault propagation and forced-fold using a non smooth discrete element method
Keywords:
discrete element method, non smooth mechanics, granular material, fault, foldAbstract
Geophysical problems as forced-fold evolution and fault propagation induce large deformations and many localisation. The continuum mechanics does not seem the more appropriate for their description and it appears more interesting to represent the media as initially discontinuous. To face both phenomena, a non smooth Discrete Element Method is used. Geophysical structures are considered as collection of rigid disks which interact by cohesive frictional contact laws. Numerical geophysical formations are correlated to mechanical properties of structures through observation and mechanical analysis.
Downloads
References
Alart P., Curnier A., “ A mixed formulation for frictional contact problems prone to Newton like
solution method”, Comput. Methods Appl. Mech. Engrg., vol. 92, n° 3, 1991, p. 353-375.
Allen M., Tildesley D., Computer simulation of liquids, Oxford University Press, 1987.
Baraff D., “ Issues in computing contact forces for non penetrating rigid bodies”, Algorithmica,
vol. 10, 1993, p. 292-352.
Belytschko T., Organ D., Gerlach C., “ Element-free galerkin methods for dynamic fracture in
concrete”, Comput. Methods Appl. Mech. Engrg., vol. 187, n° 3-4, 2000, p. 385-399.
Burbidge D., Braun J., “ Numerical models of the evolution of accretionary wedges and foldand-
thrust belts using the distinct-element method”, Geophys. J. Int., vol. 148, 2002,
p. 542-561.
Cardozo N., Bhalla K., Zehnder A., Allmendinger R., “Mechanical models of fault propagation
folds and comparison to the trishear kinematic model”, J. Struct. Geol., vol. 25, 2003,
p. 1-18.
Chang K.-J., Taboada A., Chan Y.-C., “ Geological and morphological study of the Jiufengershan
landslide triggered by the Chi-Chi Taiwan earthquake”, Geomorphology, vol. 71,
n° 3-4, 2005, p. 293-309.
Cottle R. W., Pang J., Stone R. E., The linear complementarity problem, Academic Press, Inc.,
Boston, MA, 1992.
Cundall P. A., “ A computer model for simulating progressive large scale movements of blocky
rock systems”, Proceedings of the symposium of the international society of rock mechanics,
vol. 1, 1971, p. 132-150.
Cundall P. A., Strack O. D. L., “ A discrete numerical model for granular assemblies”, Geotechnique,
vol. 29, n° 1, 1979, p. 47-65.
de Saxcé G., Feng Z., “ New inequation and functional for contact with friction”, J. Mech. of
Struct. and Mach., vol. 19, 1991, p. 301-325.
Exadaktylos G. E., Vardoulakis I., Stavropoulou M. C., Tsombosc P., “ Analogue and numerical
modeling of normal fault patterns produced due to slip along a detachment zone”, Tectonophysics,
vol. 376, 2003 p. 117-134.
Fillot N., Iordanoff I., Berthier Y., “ Simulation of wear through a mass balance in a dry contact”,
ASME J. Tribol., vol. 127, n° 1, 2005, p. 230-237.
Finch E., Hardy S., Gawthorpe R., “ Discrete element modelling of contractional faultpropagation
folding above rigid basement fault blocks”, J. Struct. Geol., vol. 25, 2003,
p. 515-528.
Hardy S., Finch E., “ Discrete Element modelling of the influence of cover strength on
basement-involved fault-propagation folding”, Tectonophysics, vol. 415, 2006, p. 225-238.
Hardy S., McClay K., “ Kinematic modelling of extensional fault-propagation folding”,
J. Struct. Geol., vol. 21, 1999, p. 695-702.
Hubbert M., “ Mechanical basis for certain familiar geological structures”, Bull. Geol. Soc.
America, vol. 62, 1951, p. 335-372.
Iordanoff I., Sève B., Berthier Y., “ Solid Third Body Analysis Using a Discrete Approach: Influence
of Adhesion and Particle Size on the Macroscopic Behavior of the Contact”, ASME
J. Tribol., vol. 124, 2002, p. 530-538.
Jean M., “ The Non Smooth Contact Dynamics Method”, Compt. Methods Appl. Math. Engrg.,
vol. 177, 1999, p. 235-257.
Jean M., Acary V., Monerie Y., “ Non-smooth contact dynamics approach of cohesive materials”,
Phil. Trans. R. Soc. Lond. A, vol. 359, 2001 p. 2497-2518.
Kishino Y., “ Disk Model Analysis of Granular Media”, Micromecanics of Granular Materials,
, p. 143-152. (eds. M. Satake and J.T. Jenkins), Elsevier.
Kishino Y., Akaizawa H., Kaneko K., “ On the plastic flow of granular materials”, Y. Kishino
(ed.), Powder and grains, 2001, p. 199-202.
Lanier J., Jean M., “ Experiments and numerical simulations with 2D disks assembly”, Powd.
Tech., vol. 109, 2000, p. 206-221.
Lohrmann J., Kukowski N., Adam J., Oncken O., “ The impact of analogue material properties
on the geometry, kinematics, and dynamics of convergent sand wedges”, Journal of
Structural Geology, vol. 25, 2003, p. 1691-1711.
Moreau J. J., “ Unilateral contact and dry friction in finite freedom dynamics”, J. Moreau, P.-
D. Panagiotopoulos (eds), Non Smooth Mechanics and Applications, CISM Courses and
Lectures, vol. 302 (Springer-Verlag, Wien, New York), 1988, p. 1-82.
Pfeiffer F., Glocker C., Multibody dynamics with unilateral contacts, Non-linear Dynamics,
John Wiley and Sons, 1996.
Renouf M., Optimisation Numérique et Calcul Parallèle pour l’étude de milieu divisés biet
tridimensionnels, PhD Thesis, Université Montpellier II, Sciences et Technologie du
Languedoc, September, 2004.
Renouf M., Acary V., Dumont G., “ Comparison of Algorithms for collisions, contact and
friction in view of Real-time applications”, Multibody Dynamics 2005 proceedings, International
Conference on Advances in Computational Multibody, Madrid, 21-24 June 2005.
Renouf M., Alart P., “ Conjugate gradient type algorithms for frictional multicontact problems:
applications to granular materials”, Comput. Methods Appl. Mech. Engrg., vol. 194,
n° 18-20, 2004, p. 2019-2041.
Renouf M., Bonamy D., Dubois F., Alart P., “ Numerical simulation of two-dimensional steady
granular flows in rotating drum: On surface flow rheology”, Phys. Fluids, vol. 17, 2005,
p. 103303.
Renouf M., Dubois F., Alart P., “ A parallel version of the Non Smooth Contact Dynamics
Algorithm applied to the simulation of granular media”, J. Comput. Appl. Math., vol. 168,
, p. 375-38, 2004.
Saussine G., Dubois F., Bohatier C., Cholet C., Gautier P., Moreau J., “ Modelling ballast behaviour
under dynamic loading. Part 1: A 2D polygonal discrete element method approach”,
Comput. Methods Appl. Mech. Engrg., vol. 195, n° 19-22, 2006, p. 2841-2859.
Taboada A., Chang K.-J., Radjaï F., Bouchette F., “ Rheology, force transmission, and shear
instabilities in frictional granular media from biaxial numerical tests using the contact dynamics
method”, J. Geoph. Research, vol. 110, 2005, p. B09202.
Troadec H., Radjaï F., Roux S., Charmet J., “ Model for granular texture with steric exclusion”,
Phys. Rev. E., vol. 66, 2002, p. 041305(4).
Yvonnet J., Chinesta F., Lorong P., Ryckelynck D., “ The constrained natural element method
(C-NEM) for treating thermal models involving moving interfaces”, Int. J. Therm. Sci.,
vol. 44, n° 6, 2005, p. 559-569.