Numerical investigations of fault propagation and forced-fold using a non smooth discrete element method

Authors

  • Mathieu Renouf LaMCoS - UMR 5514 INSA de Lyon - Bâtiment Jean d’Alembert 18-20 rue des sciences, F-69621 Villeurbanne cedex
  • Frédéric Dubois LMGC - UMR 5508 Université Montpellier II - CC 048 Place Eugène Bataillon F-34095 Montpellier cedex 5
  • Pierre Alart LMGC - UMR 5508 Université Montpellier II - CC 048 Place Eugène Bataillon F-34095 Montpellier cedex 5

Keywords:

discrete element method, non smooth mechanics, granular material, fault, fold

Abstract

Geophysical problems as forced-fold evolution and fault propagation induce large deformations and many localisation. The continuum mechanics does not seem the more appropriate for their description and it appears more interesting to represent the media as initially discontinuous. To face both phenomena, a non smooth Discrete Element Method is used. Geophysical structures are considered as collection of rigid disks which interact by cohesive frictional contact laws. Numerical geophysical formations are correlated to mechanical properties of structures through observation and mechanical analysis.

Downloads

Download data is not yet available.

References

Alart P., Curnier A., “ A mixed formulation for frictional contact problems prone to Newton like

solution method”, Comput. Methods Appl. Mech. Engrg., vol. 92, n° 3, 1991, p. 353-375.

Allen M., Tildesley D., Computer simulation of liquids, Oxford University Press, 1987.

Baraff D., “ Issues in computing contact forces for non penetrating rigid bodies”, Algorithmica,

vol. 10, 1993, p. 292-352.

Belytschko T., Organ D., Gerlach C., “ Element-free galerkin methods for dynamic fracture in

concrete”, Comput. Methods Appl. Mech. Engrg., vol. 187, n° 3-4, 2000, p. 385-399.

Burbidge D., Braun J., “ Numerical models of the evolution of accretionary wedges and foldand-

thrust belts using the distinct-element method”, Geophys. J. Int., vol. 148, 2002,

p. 542-561.

Cardozo N., Bhalla K., Zehnder A., Allmendinger R., “Mechanical models of fault propagation

folds and comparison to the trishear kinematic model”, J. Struct. Geol., vol. 25, 2003,

p. 1-18.

Chang K.-J., Taboada A., Chan Y.-C., “ Geological and morphological study of the Jiufengershan

landslide triggered by the Chi-Chi Taiwan earthquake”, Geomorphology, vol. 71,

n° 3-4, 2005, p. 293-309.

Cottle R. W., Pang J., Stone R. E., The linear complementarity problem, Academic Press, Inc.,

Boston, MA, 1992.

Cundall P. A., “ A computer model for simulating progressive large scale movements of blocky

rock systems”, Proceedings of the symposium of the international society of rock mechanics,

vol. 1, 1971, p. 132-150.

Cundall P. A., Strack O. D. L., “ A discrete numerical model for granular assemblies”, Geotechnique,

vol. 29, n° 1, 1979, p. 47-65.

de Saxcé G., Feng Z., “ New inequation and functional for contact with friction”, J. Mech. of

Struct. and Mach., vol. 19, 1991, p. 301-325.

Exadaktylos G. E., Vardoulakis I., Stavropoulou M. C., Tsombosc P., “ Analogue and numerical

modeling of normal fault patterns produced due to slip along a detachment zone”, Tectonophysics,

vol. 376, 2003 p. 117-134.

Fillot N., Iordanoff I., Berthier Y., “ Simulation of wear through a mass balance in a dry contact”,

ASME J. Tribol., vol. 127, n° 1, 2005, p. 230-237.

Finch E., Hardy S., Gawthorpe R., “ Discrete element modelling of contractional faultpropagation

folding above rigid basement fault blocks”, J. Struct. Geol., vol. 25, 2003,

p. 515-528.

Hardy S., Finch E., “ Discrete Element modelling of the influence of cover strength on

basement-involved fault-propagation folding”, Tectonophysics, vol. 415, 2006, p. 225-238.

Hardy S., McClay K., “ Kinematic modelling of extensional fault-propagation folding”,

J. Struct. Geol., vol. 21, 1999, p. 695-702.

Hubbert M., “ Mechanical basis for certain familiar geological structures”, Bull. Geol. Soc.

America, vol. 62, 1951, p. 335-372.

Iordanoff I., Sève B., Berthier Y., “ Solid Third Body Analysis Using a Discrete Approach: Influence

of Adhesion and Particle Size on the Macroscopic Behavior of the Contact”, ASME

J. Tribol., vol. 124, 2002, p. 530-538.

Jean M., “ The Non Smooth Contact Dynamics Method”, Compt. Methods Appl. Math. Engrg.,

vol. 177, 1999, p. 235-257.

Jean M., Acary V., Monerie Y., “ Non-smooth contact dynamics approach of cohesive materials”,

Phil. Trans. R. Soc. Lond. A, vol. 359, 2001 p. 2497-2518.

Kishino Y., “ Disk Model Analysis of Granular Media”, Micromecanics of Granular Materials,

, p. 143-152. (eds. M. Satake and J.T. Jenkins), Elsevier.

Kishino Y., Akaizawa H., Kaneko K., “ On the plastic flow of granular materials”, Y. Kishino

(ed.), Powder and grains, 2001, p. 199-202.

Lanier J., Jean M., “ Experiments and numerical simulations with 2D disks assembly”, Powd.

Tech., vol. 109, 2000, p. 206-221.

Lohrmann J., Kukowski N., Adam J., Oncken O., “ The impact of analogue material properties

on the geometry, kinematics, and dynamics of convergent sand wedges”, Journal of

Structural Geology, vol. 25, 2003, p. 1691-1711.

Moreau J. J., “ Unilateral contact and dry friction in finite freedom dynamics”, J. Moreau, P.-

D. Panagiotopoulos (eds), Non Smooth Mechanics and Applications, CISM Courses and

Lectures, vol. 302 (Springer-Verlag, Wien, New York), 1988, p. 1-82.

Pfeiffer F., Glocker C., Multibody dynamics with unilateral contacts, Non-linear Dynamics,

John Wiley and Sons, 1996.

Renouf M., Optimisation Numérique et Calcul Parallèle pour l’étude de milieu divisés biet

tridimensionnels, PhD Thesis, Université Montpellier II, Sciences et Technologie du

Languedoc, September, 2004.

Renouf M., Acary V., Dumont G., “ Comparison of Algorithms for collisions, contact and

friction in view of Real-time applications”, Multibody Dynamics 2005 proceedings, International

Conference on Advances in Computational Multibody, Madrid, 21-24 June 2005.

Renouf M., Alart P., “ Conjugate gradient type algorithms for frictional multicontact problems:

applications to granular materials”, Comput. Methods Appl. Mech. Engrg., vol. 194,

n° 18-20, 2004, p. 2019-2041.

Renouf M., Bonamy D., Dubois F., Alart P., “ Numerical simulation of two-dimensional steady

granular flows in rotating drum: On surface flow rheology”, Phys. Fluids, vol. 17, 2005,

p. 103303.

Renouf M., Dubois F., Alart P., “ A parallel version of the Non Smooth Contact Dynamics

Algorithm applied to the simulation of granular media”, J. Comput. Appl. Math., vol. 168,

, p. 375-38, 2004.

Saussine G., Dubois F., Bohatier C., Cholet C., Gautier P., Moreau J., “ Modelling ballast behaviour

under dynamic loading. Part 1: A 2D polygonal discrete element method approach”,

Comput. Methods Appl. Mech. Engrg., vol. 195, n° 19-22, 2006, p. 2841-2859.

Taboada A., Chang K.-J., Radjaï F., Bouchette F., “ Rheology, force transmission, and shear

instabilities in frictional granular media from biaxial numerical tests using the contact dynamics

method”, J. Geoph. Research, vol. 110, 2005, p. B09202.

Troadec H., Radjaï F., Roux S., Charmet J., “ Model for granular texture with steric exclusion”,

Phys. Rev. E., vol. 66, 2002, p. 041305(4).

Yvonnet J., Chinesta F., Lorong P., Ryckelynck D., “ The constrained natural element method

(C-NEM) for treating thermal models involving moving interfaces”, Int. J. Therm. Sci.,

vol. 44, n° 6, 2005, p. 559-569.

Downloads

Published

2006-06-09

How to Cite

Renouf, M. ., Dubois, F. ., & Alart, P. . (2006). Numerical investigations of fault propagation and forced-fold using a non smooth discrete element method. European Journal of Computational Mechanics, 15(5), 549 to 570. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2081

Issue

Section

Original Article