A monolithic strategy based on an hybrid domain decomposition method for multiphysic problems

Application to poroelasticity

Authors

  • Pierre Gosselet LM2S, (Univ. Paris 6/CNRS), 5, place Jussieu, F-75005 Paris
  • Vincent Chiaruttini LM2S, (Univ. Paris 6/CNRS), 5, place Jussieu, F-75005 Paris
  • Christian Rey LMT-Cachan, (ENS Cachan/CNRS/Univ. Paris 6), 61, av. Président Wilson, F-94235 Cachan Cedex
  • Frédéric Feyel ONERA DSME/LCME BP72, 29, av. de la Division Leclerc, F-92322 Chatillon

Keywords:

multiphysic, domain decomposition, multield problems, porous media

Abstract

A monolithic strategy based on an hybrid domain decomposition method for the numerical simulation of multiphysic problems is presented. It relies on a "physical" choice of primal interface unknowns. First numerical assessments are described for poroelasticity problems.

Downloads

Download data is not yet available.

References

[BIO 41] BIOT M. A., General theory of three dimensional consolidation, Journal of Applied

Physics, vol. 12, num. 2, 1941, p. 188-164.

[COU 90] COUSSY O., Mécanique des Milieux Poreux, Technip, 1990.

[DUR 03] DUREISSEIX D., LADEVÈZE P., SCHREFLER B., A computational strategy for

multiphysics problems application to poroelasticity, International Journal for Numerical

Methods in Engineering, vol. 56, num. 10, 2003, p. 1489-1510.

[FAR 91] FARHAT C., ROUX F.-X., A Method of Finite Element Tearing and Interconnecting

and its Parallel Solution Algorithm, Int. J. Numer. Meth. Engrg., vol. 32, 1991,

p. 1205-1227.

[FEL 88] FELIPPA C. A., GEERS T., Partionned analysis of coupled mechanical systems,

Engineering Computation, vol. 5, 1988, p. 123-133.

[FEL 01] FELIPPA C. A., PARK K., FARHAT C., Partionned analysis of coupled mechanical

systems: Formulation, Computer Methods in Applied Mechanics and Engineering,

vol. 190, 2001, p. 3247-3270.

[FOE 96] FOERCH R., Un environement orienté objet pour la modélisation en mécanique des

matériaux, Thèse de doctorat, Ecole Nationale Supérieure des Mines de Paris, 1996.

[GOR 99] GOREYCHI M., Comportement Thermo-hydro mécanique des argilites de l'Est et

son inuence sur les ourages souterains, EDP Sciences Ed., 1999.

[GOS 02] GOSSELET P., REY C., DASSET P., LENE F., A domain decomposition method for

quasi incompressible formulations with discontinuous pressure eld, Revue Européenne

des Elements Finis, vol. 11, 2002, p. 363-377.

[GOS 04] GOSSELET P., REY C., An hybrid domain decomposition method, Rapport interne,

to be submitted, 2004.

[LEW 91] LEWIS R., SCHREFLER B., SIMONI L., Coupling versus uncoupling in soil consolidation

, International Journal for Numerical and Analytical Methods in Geomechanics,

vol. 15, 1991, p. 533-548.

[MAN 93] MANDEL J., Balancing Domain Decomposition, Comm. Appl. Num. Meth. Engrg.,

vol. 9, 1993, p. 233-241.

[MAT 96] MATTEAZZI R., SCHREFLER B., VITALIANI R., Comparisons of partioned solution

procedures for transient coupled problems in sequential and parallel processing,

Advances in Comput. Struc. Tech. Civil-Comp Ltd, Edinburgh, Scotland, 1996.

[RIX 99] RIXEN D., FARHAT C., A Simple and Efcient Extension of a Class of Substructure

Based Preconditioners to Heterogeneous Structural Mechanics Problems, Int. J. Num.

Meth. Eng., vol. 44, num. 4, 1999, p. 489-516.

Downloads

Published

2004-06-11

How to Cite

Gosselet, P. ., Chiaruttini, V. ., Rey, C., & Feyel, F. . (2004). A monolithic strategy based on an hybrid domain decomposition method for multiphysic problems: Application to poroelasticity. European Journal of Computational Mechanics, 13(5-7), 523–534. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2305

Issue

Section

Original Article