Numerical aspects of fluid infusion inside a compressible porous medium undergoing large strains
DOI:
https://doi.org/10.13052/REMN.17.819-827Keywords:
LRI (Liquid Resin Infusion), RFI (Resin Film Infusion), composites materials, finite element method, porous media, finite strainsAbstract
A new model for a thermo-reactive fluid flow across a highly compressible porous medium has been proposed and employed to predict infusion-based manufacturing processes for polymer composites (Celle, 2006). These techniques consist in mixing the reinforcements and the resin during the manufacturing cycle, transversely to the fabrics plane, by applying a pressure on the resin/preform stacking. This yields cost reductions and avoids filling problems. The introduction of a numerical model in a finite element software to study infusion-based processes will increase their diffusion by a reliable prediction of both part thickness and porosity (Celle et al., 2008). The present paper deals mainly with the numerical treatments related to the resin layer.
Downloads
References
Arnold D. N., Brezzi F., Fortin M., “A stable finite element for the Stokes equations”,
Estratto da Calcolo, vol. 21, 1984, p. 337-344.
Breard J., Henzel Y., Trochu F., “A standard characterization of saturated and unsaturated
flow behaviors in porous media”, Proceedings of the 12th International Conference on
Composite Materials ICCM12, Paris, 5-9 july 1999.
Celle P., Couplage fluide/milieu poreux en grandes déformations pour la modélisation des
procédés d’élaboration des matériaux compostes par infusion, Thèse de doctorat de
l’Ecole Nationale Supérieure des Mines de Saint-Etienne, 2006.
Celle P., Drapier S., Bergheau J.-M., “Numerical modeling of liquid infusion into fibrous
media undergoing compaction”, European Journal of Mechanics/A, vol. 27, n° 4, 2008,
p. 647-661.
Darcy H., Les fontaines publiques de la ville de Dijon, Dalmont, 1856.
Drapier S., Pagot A., Vautrin A., Henrat P., “Influence of the stitching density on the
transverse permeability of Non-Crimped New Concept (NC2) multiaxial reinforcements:
measurements and predictions”, Composites Science and Technoogy, vol. 62, n° 15,
-1991, 2002.
Drapier S., Monnatte J., O. Elbouazzaoui, P. Henrat, “Characterization of transient through
thickness permeabilities of Non Crimp New Concept (NC2) multiaxial fabrics”,
Composites/A, vol. 36, 2006, p. 877-892.
Gray W.G., Schrefler B. A., “Thermodynamic approach to effective stress in partially
saturated porous media”, European Journal Mechanics, A/solids, 20, 2001, p. 521-538.
Jäger W., Mikelic A., “On the roughness-induced effective boundary conditions for an
incompressible viscous flow”, Journal of Differential Equations, vol. 170, n° 1, p. 96-122,
Kempner E. A., Hahn H. T., “A unified approach to manufacturing simulation for
composites”, Proceedings of the First Korea-U.S. Workshop on Composite Materials,
Seoul, Korea, 1998.
Terzaghi K., Peck R.B., Mesri G., Soil Mechanics in Engineering Practice, Jones Wiley &
Sons, New York, 1967.