Modelling of Heat Transfers, Phase Changes and Mechanical Behaviour during Welding

Authors

  • Roland Fortunier Ecole des Mines, Centre SMS, 158 cours Fauriel F-42023, Saint-Etienne cedex 02
  • Jean-Michel Bergheau LTDS, UMR 5513 CNRS/ECL/ENISE, 58 rue Jean Parot, F-42023 Saint-Etienne cedex 02

Keywords:

welding, modelling, phase changes, temperature, plasticity

Abstract

This paper describes the main models used in finite element software for welding simulations. Welding involves thermal transfers from the weld zone to the rest of the structure and thus leads to loadings due to thermal gradients and tools. Moreover, the temperature reaches locally relatively high values, so that the evolution of the microstructure in the material has to be taken into account. The main physical mechanisms involved during welding imply fully coupled thermal transfers and phase changes models, and thermomechanical models involving transformation induced plasticity. These models are described, and the concluding remarks outline particular points that are to be more investigated in the future.

Downloads

Download data is not yet available.

References

Abrassart F., Influence des transformations martensitiques sur les propriétés mécaniques des

alliages du système Fe-Ni-Cr-C, Thèse de doctorat, Université de Nancy I, 1972.

Aubry C., Denis S., Archambault P., Simon A. and Ruckstuhl F., “Modelling of tempering

kinetics for the calculation of heat treatment residual stresses in steels”, Proc. of ICRS-5,

Edited by T. Ericsson, M. Oden and A. Andersson, Vol. 1, p. 412-417, 1997.

Avrami M., “Kinetic of phase change. I: general theory”, J. Chem. Phys., vol. 7, p. 103-112,

Avrami M., “Kinetic of phase change. II: transformation-time relations for random

distribution of nuclei”, J. Chem. Phys., vol. 8, p. 212-224, 1940.

Avrami M., “Kinetic of phase change. III: granulation, phase change and microstructure, J.

Chem. Phys.”, vol. 9, p. 117-184, 1941.

Berveiller M., Fischer F.D., Mechanics of Solids with Phase Changes, CISM Course, 368,

, Springer.

Boitout F. and Bergheau J.M., “The numerical simulation of welding in Europe : Present

capabilities and future trends”, Transactions of JWRI, Vol. 32, N°1, p. 197-206, 2003.

Bru D., Devaux J., Bergheau J.M. and Pont D., “Influence of material properties at high

temperatures on the modelling of welding residual stress and deformation state”,

Mathematical Modelling of Weld Phenomena 3, p. 456-463, 1996.

Cavallo N., Contribution à la validation expérimentale de modèles décrivant la ZAT lors

d’une opération de soudage, Thèse de doctorat, INSA Lyon, 1998.

Colonna F., Massoni E., Denis S., Chenot J.L., Wendenbaum J. and Gauthier E., “On thermoelastic-

viscoplastic analysis of cooling processes including phase changes”, J. Materials

Processing Tech., vol. 34, p. 525-532, 1992.

Coret M. and Combescure A., “A mesomodel for the numerical simulation of the multiphasic

behavior of materials under anisothermal loading (application to two low-carbon steels)”,

Int. J. Mechanical Sciences , vol. 44, 9, p. 1947-1963, 2002.

Denis S., Farias D., Simon A., “Mathematical model coupling phase transformations and

temperature evolutions in steels”, ISIJ Int., vol. 32 no. 3, p. 316-325, 1992.

Denis S., Gauthier E., Sjöström S. and Simon A, Acta Met., vol. 35, p. 1621-1632, 1987.

Fernandes F.B.M., Denis S., Simon A., “Mathematical model coupling phase transformation

and temperature evolution during quenching of steels”, Mat. Sci. Technol., vol. 10, p. 838-

, 1985.

Fischer F.D., Reisner G., Werner E., Tanaka K., Cailletaud G. and Antretter T., “A new view

on transformation induced plasticity (TRIP)”, Int. J. Plasticity, vol. 16, p. 723-748, 2000.

Fortunier R., Leblond J.B. and Bergheau J.M., “A numerical model for multiple phase

transformations in steels during thermal processes”, J. Shanghai Jiaotong Un. , vol E5

No. 1, p. 213-220, 2000.

Giusti J., Contraintes et déformations résiduelles d’origine thermique – Application au

soudage et à la trempe des aciers, Thèse de doctorat, Université Paris VI, 1981.

Goldak J.A., Chakravarti A.and Bibby J., “A new finite element model for welding heat

sources”, Metallurgical Transactions, vol. 15B, p. 299-305, 1984.

Greenwood G.W. and Johnson R.H., “The deformation of metals under small stresses during

phase transformation”, Proc. Roy. Soc., vol. A283, p. 403-422, 1965.

Inoue T., Wang Z., “Coupling between stress, temperature and metallic structures during

processes involving phase transformations”, Mat. Sci. Technol., vol. 19, p. 845-850, 1985.

Habraken A.M., Contribution à la modélisation du formage des métaux par la méthode des

éléments finis, Thèse de doctorat, Université de Liège, 1988.

Koistinen D.P. and Marburger R.E., “A general equation prescribing extend of austenitemartensite

transformation in pure Fe-C alloys and plain carbon steels”, Acta Metall.,

vol. 7, p. 59-60, 1959.

Leblond J.B., Devaux J.C., “A new kinetic model for anisothermal metallurgical

transformations in steels including effect of austenite grain size”, Acta Mater., vol. 32,

p. 137-146, 1984.

Leblond J.B., Devaux J. and Devaux J.C., “Mathematical modelling of transformation

plasticity in steels, I : Case of ideal-plastic phases, II : Coupling with strain-hardening

phenomena”, Int. J. Plasticity, vol. 5, p. 551-591, 1989

Leblond J.B., Mottet G. and Devaux J.C., “A theoretical and numerical approach to the plastic

behavior of steels during phase transformation, I. Derivation of general relations, II. Study

of classical plasticity for ideal-plastic phases”, J. Mech. Phys. Solids, vol. 34 No. 4,

p. 395-432, 1986.

Magee C.L., Transformation kinetics, microplasticity and aging of martensite in Fe-31 Ni,

PhD Thesis, Carnegie Institute of Technology, Pittsburgh (USA), 1966.

Petit S., Conséquences mécaniques des transformations structurales dans les alliages ferreux,

Thèse de doctorat, INSA Lyon, 2000.

Pont D., Bergheau J.-M., Rochette M., Fortunier R., “Identification of a kinetic model for

anisothermal metallurgical transformations in steels”, Inverse Problems in Engineering

Mechanics, H.D. Bui, M. Tanaka et al. editors, Balkema, Rotterdam, p. 151-156, 1994.

Pumphey W.I. and Jones F.W., “Inter-relation of hardenability and isothermal transformation

data”, JISI, vol. 159, p. 137-144, 1948.

Reti T., Fried Z., Felde I., “Multiphase modelling of austenite transformation processes during

quenching”, Proc. 3rd Int. Congress on quenching and control of distortion, p. 157-173,

Taleb L. and Sidoroff F., “A micromechanical modeling of the Greenwood-Johnson

mechanism in transformation induced plasticity”, Int. J. Plasticity, Vol. 19, 10, p. 1821-

, 2003.

Videau J.C., Cailletaud G. and Pineau A., “Modélisation des effets mécaniques des

transformations de phases pour le calcul des structures”, J. Ph. IV, vol. 4, p. 227-232,

Vincent Y., Simulation numérique des conséquences métallurgiques et mécaniques induites

par une opération de soudage - Acier 16MND5, Thèse de doctorat, INSA Lyon, 2002.

Vincent Y., Bergheau J.M., Leblond J.B., “Viscoplastic behaviour of steels during phase

transformations”, Comptes Rendus Mécanique, Vol. 331, Issue 9, p. 587-594, 2003.

Waeckel F., Une loi de comportement thermo-métallurgique des aciers pour le calcul

mécanique des structures, Thèse de doctorat, ENSAM, 1994.

Wang Z.G. and Inoue T., “Viscoplastic constitutive relation incorporating phase

transformation - Application to welding”, Materials Sci. Technol., vol. 1, 1985, p. 899-

, 1985.

Downloads

Published

2004-06-30

How to Cite

Fortunier, R. ., & Bergheau, J.-M. . (2004). Modelling of Heat Transfers, Phase Changes and Mechanical Behaviour during Welding. European Journal of Computational Mechanics, 13(3-4), 231–245. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2347

Issue

Section

Original Article

Most read articles by the same author(s)