Modelling of Heat Transfers, Phase Changes and Mechanical Behaviour during Welding
Keywords:
welding, modelling, phase changes, temperature, plasticityAbstract
This paper describes the main models used in finite element software for welding simulations. Welding involves thermal transfers from the weld zone to the rest of the structure and thus leads to loadings due to thermal gradients and tools. Moreover, the temperature reaches locally relatively high values, so that the evolution of the microstructure in the material has to be taken into account. The main physical mechanisms involved during welding imply fully coupled thermal transfers and phase changes models, and thermomechanical models involving transformation induced plasticity. These models are described, and the concluding remarks outline particular points that are to be more investigated in the future.
Downloads
References
Abrassart F., Influence des transformations martensitiques sur les propriétés mécaniques des
alliages du système Fe-Ni-Cr-C, Thèse de doctorat, Université de Nancy I, 1972.
Aubry C., Denis S., Archambault P., Simon A. and Ruckstuhl F., “Modelling of tempering
kinetics for the calculation of heat treatment residual stresses in steels”, Proc. of ICRS-5,
Edited by T. Ericsson, M. Oden and A. Andersson, Vol. 1, p. 412-417, 1997.
Avrami M., “Kinetic of phase change. I: general theory”, J. Chem. Phys., vol. 7, p. 103-112,
Avrami M., “Kinetic of phase change. II: transformation-time relations for random
distribution of nuclei”, J. Chem. Phys., vol. 8, p. 212-224, 1940.
Avrami M., “Kinetic of phase change. III: granulation, phase change and microstructure, J.
Chem. Phys.”, vol. 9, p. 117-184, 1941.
Berveiller M., Fischer F.D., Mechanics of Solids with Phase Changes, CISM Course, 368,
, Springer.
Boitout F. and Bergheau J.M., “The numerical simulation of welding in Europe : Present
capabilities and future trends”, Transactions of JWRI, Vol. 32, N°1, p. 197-206, 2003.
Bru D., Devaux J., Bergheau J.M. and Pont D., “Influence of material properties at high
temperatures on the modelling of welding residual stress and deformation state”,
Mathematical Modelling of Weld Phenomena 3, p. 456-463, 1996.
Cavallo N., Contribution à la validation expérimentale de modèles décrivant la ZAT lors
d’une opération de soudage, Thèse de doctorat, INSA Lyon, 1998.
Colonna F., Massoni E., Denis S., Chenot J.L., Wendenbaum J. and Gauthier E., “On thermoelastic-
viscoplastic analysis of cooling processes including phase changes”, J. Materials
Processing Tech., vol. 34, p. 525-532, 1992.
Coret M. and Combescure A., “A mesomodel for the numerical simulation of the multiphasic
behavior of materials under anisothermal loading (application to two low-carbon steels)”,
Int. J. Mechanical Sciences , vol. 44, 9, p. 1947-1963, 2002.
Denis S., Farias D., Simon A., “Mathematical model coupling phase transformations and
temperature evolutions in steels”, ISIJ Int., vol. 32 no. 3, p. 316-325, 1992.
Denis S., Gauthier E., Sjöström S. and Simon A, Acta Met., vol. 35, p. 1621-1632, 1987.
Fernandes F.B.M., Denis S., Simon A., “Mathematical model coupling phase transformation
and temperature evolution during quenching of steels”, Mat. Sci. Technol., vol. 10, p. 838-
, 1985.
Fischer F.D., Reisner G., Werner E., Tanaka K., Cailletaud G. and Antretter T., “A new view
on transformation induced plasticity (TRIP)”, Int. J. Plasticity, vol. 16, p. 723-748, 2000.
Fortunier R., Leblond J.B. and Bergheau J.M., “A numerical model for multiple phase
transformations in steels during thermal processes”, J. Shanghai Jiaotong Un. , vol E5
No. 1, p. 213-220, 2000.
Giusti J., Contraintes et déformations résiduelles d’origine thermique – Application au
soudage et à la trempe des aciers, Thèse de doctorat, Université Paris VI, 1981.
Goldak J.A., Chakravarti A.and Bibby J., “A new finite element model for welding heat
sources”, Metallurgical Transactions, vol. 15B, p. 299-305, 1984.
Greenwood G.W. and Johnson R.H., “The deformation of metals under small stresses during
phase transformation”, Proc. Roy. Soc., vol. A283, p. 403-422, 1965.
Inoue T., Wang Z., “Coupling between stress, temperature and metallic structures during
processes involving phase transformations”, Mat. Sci. Technol., vol. 19, p. 845-850, 1985.
Habraken A.M., Contribution à la modélisation du formage des métaux par la méthode des
éléments finis, Thèse de doctorat, Université de Liège, 1988.
Koistinen D.P. and Marburger R.E., “A general equation prescribing extend of austenitemartensite
transformation in pure Fe-C alloys and plain carbon steels”, Acta Metall.,
vol. 7, p. 59-60, 1959.
Leblond J.B., Devaux J.C., “A new kinetic model for anisothermal metallurgical
transformations in steels including effect of austenite grain size”, Acta Mater., vol. 32,
p. 137-146, 1984.
Leblond J.B., Devaux J. and Devaux J.C., “Mathematical modelling of transformation
plasticity in steels, I : Case of ideal-plastic phases, II : Coupling with strain-hardening
phenomena”, Int. J. Plasticity, vol. 5, p. 551-591, 1989
Leblond J.B., Mottet G. and Devaux J.C., “A theoretical and numerical approach to the plastic
behavior of steels during phase transformation, I. Derivation of general relations, II. Study
of classical plasticity for ideal-plastic phases”, J. Mech. Phys. Solids, vol. 34 No. 4,
p. 395-432, 1986.
Magee C.L., Transformation kinetics, microplasticity and aging of martensite in Fe-31 Ni,
PhD Thesis, Carnegie Institute of Technology, Pittsburgh (USA), 1966.
Petit S., Conséquences mécaniques des transformations structurales dans les alliages ferreux,
Thèse de doctorat, INSA Lyon, 2000.
Pont D., Bergheau J.-M., Rochette M., Fortunier R., “Identification of a kinetic model for
anisothermal metallurgical transformations in steels”, Inverse Problems in Engineering
Mechanics, H.D. Bui, M. Tanaka et al. editors, Balkema, Rotterdam, p. 151-156, 1994.
Pumphey W.I. and Jones F.W., “Inter-relation of hardenability and isothermal transformation
data”, JISI, vol. 159, p. 137-144, 1948.
Reti T., Fried Z., Felde I., “Multiphase modelling of austenite transformation processes during
quenching”, Proc. 3rd Int. Congress on quenching and control of distortion, p. 157-173,
Taleb L. and Sidoroff F., “A micromechanical modeling of the Greenwood-Johnson
mechanism in transformation induced plasticity”, Int. J. Plasticity, Vol. 19, 10, p. 1821-
, 2003.
Videau J.C., Cailletaud G. and Pineau A., “Modélisation des effets mécaniques des
transformations de phases pour le calcul des structures”, J. Ph. IV, vol. 4, p. 227-232,
Vincent Y., Simulation numérique des conséquences métallurgiques et mécaniques induites
par une opération de soudage - Acier 16MND5, Thèse de doctorat, INSA Lyon, 2002.
Vincent Y., Bergheau J.M., Leblond J.B., “Viscoplastic behaviour of steels during phase
transformations”, Comptes Rendus Mécanique, Vol. 331, Issue 9, p. 587-594, 2003.
Waeckel F., Une loi de comportement thermo-métallurgique des aciers pour le calcul
mécanique des structures, Thèse de doctorat, ENSAM, 1994.
Wang Z.G. and Inoue T., “Viscoplastic constitutive relation incorporating phase
transformation - Application to welding”, Materials Sci. Technol., vol. 1, 1985, p. 899-
, 1985.