Simulation thermomécanique du soudage par friction-malaxage
DOI:
https://doi.org/10.13052/REMN.16.865-887Keywords:
friction stir welding, finite element, thermomechanical couplingAbstract
Friction Stir Welding is a welding process where the heat generation is provided by the mechanical dissipation due to the deformations and the friction between the tool and the sheets. This paper describes a finite element model to simulate the heating phenomenon during the steady-state of the process. The stress equilibrium, the energy conservation and the mass conservation are studied in a fully coupled model using a tetrahedral finite element. An example is presented for an aluminium alloy 7075.
Downloads
References
Arnold D. N., Brezzi F., Fortin M., “A stable element for the Stokes equations”, Calcolo.,
vol. 21, 1984, p. 337-344.
Babuska I., “The finite element method with Lagrangien multipliers”, Numer Math., vol. 20,
, p. 179-192.
Bastier A., Maitournam M. H., Dang Van K., « Approche eulérienne et intéraction fluidestructure
pour la modélisation Du FrictionStir Welding », 7e colloque national en calcul
des structures, Giens, 2005.
Bathe K.J., Finite Element Procedure, Prentice-Hall, 1996.
Bergheau J.-M., Fortunier R., Simulation numérique des transferts thermiques par éléments
finis, Hermès Lavoisier, 2004.
Bergheau J.-M., Pont D., Leblond J.-B., “Three-dimensional simulation of a LASER surface
treatment through steady state computation in the heat source comoving frame”, Mechanical
Effects of Welding, IUTAM Symposium Lulea (Sweden), 1991, edited by L. Karlsson, L.-E.
Lindgren, M. Jonsson, 1992, Springer-Verlag, Berlin Heidelberg, p. 85-92.
Brezzi F., “On the existence, uniqueness and approximation of saddle-point problems arising
from Lagrangien multipliers”, RAIRO, Anal. Numer, R2, 1974, p. 129-151.
Brooks A. N., Hughes T. J.R., “Streamline Upwind/Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier-
Stokes equations”, Computer Methods in Applied Mechanics and Engineering, vol. 32,
, p. 199-259.
Colegrove P. A., Shercliff H. R., “Development of Trivex friction stir welding tool Part 2 –
three-dimensional flow modelling”, Science and Techonoly of Welding and Joining,
vol. 9, n° 4, 2004, p. 352-361.
Connolly B. J., Davenport A. J., Jariyaboon M., Padovani C., Ambat R., Williams S. W.,
Price D. A., Wescott A., Goodfellow C. J., Lee C. M., Proc. 5th Int. Symp. on Friction
Stir Welding, 2004.
Dang Van K., Inglebert G., Proix J. M., « Sur un nouvel algorithme de calcul des structures
élastoplastiques en régime stationnaire », 3e colloque sur les tendances actuelles en calcul
des structures, 1985.
Donne C. D., Lima E., Wegener J., Pyzalla A., Buslaps T., Proc. 3rd Int. Symp. on Friction
Stir Welding, 2001.
Feulvarch E., Robin V., Bergheau J. M., “Resistance spot welding simulation: a general
formulation of electrothermal contact conditions”, Journal of Materials Processing
Technology, vol. 153-154, 2004, p. 436-441.
Feulvarch E., Rogeon P., Carre P., Robin V., Sibilia G., Bergheau J. M., “Resistance spot
welding process: experimental and numerical modeling of the weld growth mechanisms
with consideration of contact conditions”, Numerical Heat Transfer, Part A, vol. 49,
, p. 345-367.
Feulvarch E, Modélisation numérique du soudage par friction-malaxage (Friction Stir
Welding), Thèse de doctorat, Université Jean Monnet de Saint-Etienne, 2005.
Fourment L., Guerdoux S., Miles M., Nelson T., “Numerical Simulation of the Friction Stir
Welding Process using both Lagrangian and Arbitrary Lagrangian Eulerian
Formulations”, Proc. 5th Int. Symp. on Friction Stir Welding, 2004.
Gallais C., Joints soudés par friction malaxage d’alliages d’aluminium de la série 6XXX :
caractérisation et modélisation, Thèse de doctorat, INPG, 2005.
Gresho P. M., Sani R. L., Incompressible flow and the finite element method, Wiley, 2000.
Jaouen O., Modélisation tridimensionnelle par éléments finis pour l’analyse
thermomécanique du refroidissement des pièces coulées, Thèse de doctorat, Ecole des
Mines de Paris, 1998.
Jin Z., Cassada W. A., Cady C. M., Gray G. T., “Mechanical Response of AA7075
Aluminium Alloy over a Wide Range of Temperatures and Strain Rates”, Materials
Science Forum, Trans. Tech. Publications, vol. 331-337, 2000, p. 527-532.
Le Meur G., Etude de la condition de liaison thermique à une interface de contact solidesolide
siège d’une dissipation par effet Joule : application au soudage par point, Thèse de
doctorat, Ecole Polytechnique de l’université de Nantes, 2002.
Maitournam M. H., Formulation et résolution numérique des problèmes
thermoviscoplastiques en régime permanent, Thèse de doctorat, Ecole Nationale des
Ponts et Chaussées, 1989.
Michaleris P., Debiccari A., “Prediction of welding distortion”, Welding Journal, vol. 76,
, p. 172-180.
Nguyen Q. S., Rahamian M., Mouvement permanent d’une fissure en milieu élastoplastique,
Journée de Mécanique Appliquées, 1981.
Pascal R., Conraux P., Bergheau J. M., “Coupling between finite elements and boundary
elements for the numerical simulation of induction heating processes using an harmonic
balance method”, IEEE Transactions on Magnetics, special CEFC issue, vol. 39, n° 3,
, p. 1535-1538.
Rajadhyaksha S. M. A., Michaleris P., “Optimization of thermal processes using an eulerian
formulation and application in laser surface hardening”, International Journal for
Numerical Methods in Engineering, vol. 47, 2000, p. 1807-1823.
Reddy J. N., Gartling D. K., The finite element method in Heat transfer and fluid dynamics,
CRC Press, 2000.
Reynolds A. P., “Friction Stir Welding of Aluminium Alloys”, Handbook of aluminium: alloy
production and materials manufacturing, 2003, p. 576.
Shanghvi J. Y., Michaleris P., “Thermo-elasto-plastic finite element analysis of quasi-state
processes in eulerian reference frames”, International Journal for Numerical Methods in
Engineering, vol. 53, 2002, p. 1533-1556.
Shercliff H. R., Colegrove P. A., “Modelling of friction stir welding”, Mathematical
Modelling of Weld Phenomena, vol. 6, 2002, p. 927-974.
Souloumiac B., Boitout F., Bergheau J. M., “A new local/global approach for the modelling of
welded component distortions”, Mathematical Modelling of Weld Phenomena, vol. 5, 2001.
SYSWELD®, SYSWELD user’s manual, ESI Group, 2006.
Wagoner R. H., Chenot J.-L., Metal forming analysis, Cambridge University Press, 2001.
Zhang L., Michaleris P., “Investigation of Lagrangien and Eulerian finite element methods for
modeling laser forming process”, Finite element in analysis and design, vol. 40, 2004,
p. 383-405.
Zienkiewicz Z. O., Taylor R. L., « La méthode des elements finis », 1990.