Simulation thermomécanique du soudage par friction-malaxage

Authors

  • Eric Feulvarch ESI Group 70 rue Robert F-69458 Lyon cedex 06 and LTDS UMR 5513 CNRS/ECL/ENISE 58 rue Jean Parot
  • Frédéric Boitout ESI Group 70 rue Robert F-69458 Lyon cedex 06
  • Jean-Michel Bergheau LTDS UMR 5513 CNRS/ECL/ENISE 58 rue Jean Parot F-42023 Saint-Etienne cedex 02

DOI:

https://doi.org/10.13052/REMN.16.865-887

Keywords:

friction stir welding, finite element, thermomechanical coupling

Abstract

Friction Stir Welding is a welding process where the heat generation is provided by the mechanical dissipation due to the deformations and the friction between the tool and the sheets. This paper describes a finite element model to simulate the heating phenomenon during the steady-state of the process. The stress equilibrium, the energy conservation and the mass conservation are studied in a fully coupled model using a tetrahedral finite element. An example is presented for an aluminium alloy 7075.

Downloads

Download data is not yet available.

References

Arnold D. N., Brezzi F., Fortin M., “A stable element for the Stokes equations”, Calcolo.,

vol. 21, 1984, p. 337-344.

Babuska I., “The finite element method with Lagrangien multipliers”, Numer Math., vol. 20,

, p. 179-192.

Bastier A., Maitournam M. H., Dang Van K., « Approche eulérienne et intéraction fluidestructure

pour la modélisation Du FrictionStir Welding », 7e colloque national en calcul

des structures, Giens, 2005.

Bathe K.J., Finite Element Procedure, Prentice-Hall, 1996.

Bergheau J.-M., Fortunier R., Simulation numérique des transferts thermiques par éléments

finis, Hermès Lavoisier, 2004.

Bergheau J.-M., Pont D., Leblond J.-B., “Three-dimensional simulation of a LASER surface

treatment through steady state computation in the heat source comoving frame”, Mechanical

Effects of Welding, IUTAM Symposium Lulea (Sweden), 1991, edited by L. Karlsson, L.-E.

Lindgren, M. Jonsson, 1992, Springer-Verlag, Berlin Heidelberg, p. 85-92.

Brezzi F., “On the existence, uniqueness and approximation of saddle-point problems arising

from Lagrangien multipliers”, RAIRO, Anal. Numer, R2, 1974, p. 129-151.

Brooks A. N., Hughes T. J.R., “Streamline Upwind/Petrov-Galerkin formulations for

convection dominated flows with particular emphasis on the incompressible Navier-

Stokes equations”, Computer Methods in Applied Mechanics and Engineering, vol. 32,

, p. 199-259.

Colegrove P. A., Shercliff H. R., “Development of Trivex friction stir welding tool Part 2 –

three-dimensional flow modelling”, Science and Techonoly of Welding and Joining,

vol. 9, n° 4, 2004, p. 352-361.

Connolly B. J., Davenport A. J., Jariyaboon M., Padovani C., Ambat R., Williams S. W.,

Price D. A., Wescott A., Goodfellow C. J., Lee C. M., Proc. 5th Int. Symp. on Friction

Stir Welding, 2004.

Dang Van K., Inglebert G., Proix J. M., « Sur un nouvel algorithme de calcul des structures

élastoplastiques en régime stationnaire », 3e colloque sur les tendances actuelles en calcul

des structures, 1985.

Donne C. D., Lima E., Wegener J., Pyzalla A., Buslaps T., Proc. 3rd Int. Symp. on Friction

Stir Welding, 2001.

Feulvarch E., Robin V., Bergheau J. M., “Resistance spot welding simulation: a general

formulation of electrothermal contact conditions”, Journal of Materials Processing

Technology, vol. 153-154, 2004, p. 436-441.

Feulvarch E., Rogeon P., Carre P., Robin V., Sibilia G., Bergheau J. M., “Resistance spot

welding process: experimental and numerical modeling of the weld growth mechanisms

with consideration of contact conditions”, Numerical Heat Transfer, Part A, vol. 49,

, p. 345-367.

Feulvarch E, Modélisation numérique du soudage par friction-malaxage (Friction Stir

Welding), Thèse de doctorat, Université Jean Monnet de Saint-Etienne, 2005.

Fourment L., Guerdoux S., Miles M., Nelson T., “Numerical Simulation of the Friction Stir

Welding Process using both Lagrangian and Arbitrary Lagrangian Eulerian

Formulations”, Proc. 5th Int. Symp. on Friction Stir Welding, 2004.

Gallais C., Joints soudés par friction malaxage d’alliages d’aluminium de la série 6XXX :

caractérisation et modélisation, Thèse de doctorat, INPG, 2005.

Gresho P. M., Sani R. L., Incompressible flow and the finite element method, Wiley, 2000.

Jaouen O., Modélisation tridimensionnelle par éléments finis pour l’analyse

thermomécanique du refroidissement des pièces coulées, Thèse de doctorat, Ecole des

Mines de Paris, 1998.

Jin Z., Cassada W. A., Cady C. M., Gray G. T., “Mechanical Response of AA7075

Aluminium Alloy over a Wide Range of Temperatures and Strain Rates”, Materials

Science Forum, Trans. Tech. Publications, vol. 331-337, 2000, p. 527-532.

Le Meur G., Etude de la condition de liaison thermique à une interface de contact solidesolide

siège d’une dissipation par effet Joule : application au soudage par point, Thèse de

doctorat, Ecole Polytechnique de l’université de Nantes, 2002.

Maitournam M. H., Formulation et résolution numérique des problèmes

thermoviscoplastiques en régime permanent, Thèse de doctorat, Ecole Nationale des

Ponts et Chaussées, 1989.

Michaleris P., Debiccari A., “Prediction of welding distortion”, Welding Journal, vol. 76,

, p. 172-180.

Nguyen Q. S., Rahamian M., Mouvement permanent d’une fissure en milieu élastoplastique,

Journée de Mécanique Appliquées, 1981.

Pascal R., Conraux P., Bergheau J. M., “Coupling between finite elements and boundary

elements for the numerical simulation of induction heating processes using an harmonic

balance method”, IEEE Transactions on Magnetics, special CEFC issue, vol. 39, n° 3,

, p. 1535-1538.

Rajadhyaksha S. M. A., Michaleris P., “Optimization of thermal processes using an eulerian

formulation and application in laser surface hardening”, International Journal for

Numerical Methods in Engineering, vol. 47, 2000, p. 1807-1823.

Reddy J. N., Gartling D. K., The finite element method in Heat transfer and fluid dynamics,

CRC Press, 2000.

Reynolds A. P., “Friction Stir Welding of Aluminium Alloys”, Handbook of aluminium: alloy

production and materials manufacturing, 2003, p. 576.

Shanghvi J. Y., Michaleris P., “Thermo-elasto-plastic finite element analysis of quasi-state

processes in eulerian reference frames”, International Journal for Numerical Methods in

Engineering, vol. 53, 2002, p. 1533-1556.

Shercliff H. R., Colegrove P. A., “Modelling of friction stir welding”, Mathematical

Modelling of Weld Phenomena, vol. 6, 2002, p. 927-974.

Souloumiac B., Boitout F., Bergheau J. M., “A new local/global approach for the modelling of

welded component distortions”, Mathematical Modelling of Weld Phenomena, vol. 5, 2001.

SYSWELD®, SYSWELD user’s manual, ESI Group, 2006.

Wagoner R. H., Chenot J.-L., Metal forming analysis, Cambridge University Press, 2001.

Zhang L., Michaleris P., “Investigation of Lagrangien and Eulerian finite element methods for

modeling laser forming process”, Finite element in analysis and design, vol. 40, 2004,

p. 383-405.

Zienkiewicz Z. O., Taylor R. L., « La méthode des elements finis », 1990.

Downloads

Published

2007-10-25

How to Cite

Feulvarch, E. ., Boitout, F., & Bergheau, J.-M. . (2007). Simulation thermomécanique du soudage par friction-malaxage. European Journal of Computational Mechanics, 16(6-7), 865–887. https://doi.org/10.13052/REMN.16.865-887

Issue

Section

Original Article

Most read articles by the same author(s)