Régularisation d’une surface de contact par approximation diffuse

Authors

  • Dominique Chamoret ESI Software Le Discover, 84 Boulevard Vivier Merle 69485 Lyon Cedex 03, France and LTDS, UMR5513 CNRS/ECL/ENISE 58 Rue Jean Parot 42023 Saint Etienne, France
  • Alain Rassineux LMR, UMR6066, UTC B.P. 529 60205 Compiègne Cedex, France
  • Pierre Villon LMR, UMR6066, UTC B.P. 529 60205 Compiègne Cedex, France
  • Jean-Michel Bergheau LTDS, UMR5513 CNRS/ECL/ENISE 58 Rue Jean Parot 42023 Saint Etienne, France

Keywords:

Contact Surface, Finite Element Method, Diffuse Approximation

Abstract

The purpose of this paper is to propose a new technique to regularise a contact surface generated by the finite element method. The non-smoothness of these surfaces is one of the fundamental problems for the numerical treatment of contact in large slips. The method used to smooth the contact surfaces rests on the technique of diffuse approximation based on the nodes of the mesh. The new geometrical model described, the elementary contact residual vector and the stiffness matrix are expressed using the properties of the smooth surface.

Downloads

Download data is not yet available.

References

[ALA 91] ALART P., CURNIER A., « A Mixed Formulation for Frictional Contact Problems

prone to Newton like Solution Methods », Computer Methods in Applied Mechanics and

Engineering, vol. 92, n 3, 1991, p. 353–375.

[ESI 00] ESI Software, « SYSTUS 2000, User’s Manual », 2000.

[FOU 99] FOURMENT L., CHENOT J. L., MOCELLIN K., « Numerical formulations and algorithms

for solving contact problems in metal forming simulation », International Journal

for Numerical Methods in Engineering, vol. 46, 1999, p. 1435–1462.

[KLA 95] KLARBRING A., « Large displacement frictional contact : a continuum framework

for finite element discretization », European Journal of Mechanics - A/Solids, vol. 14, n

, 1995, p. 237–253.

[KRS 01a] KRSTULOVIC-OPARA L., WRIGGERS P., « Convergence studies for 2D smooth

contact elements », European Conference on Computational Mechanics, June 26–29 2001,

Cracow, Poland.

[KRS 01b] KRSTULOVIC-OPARA L., WRIGGERS P., « Convergence studies for 3D smooth

frictional contact elements based on the quartic Bézier surfaces », 3 Contact Mechanics

International Symposium, June 17-21 2001, Praia da Consolação, Peniche, Portugal.

[LAU 93] LAURSEN T., SIMO J., « A continuum-based finite element formulation for the implicit

solution of multibody large deformation frictional contact problems », International

Journal for Numerical Methods in Engineering, vol. 36, 1993, p. 3451–3485.

[NAY 91] NAYROLLES B., TOUZOT G., VILLON P., « L’approximation diffuse », C.R Acad.

Sci. Paris, vol. 313, 1991, p. 293–296, Série II.

[PIE 97] PIETRZAK G., « Continuum mechanics modelling and augmented lagrangian formulation

of large deformation frictional contact problems », Thèse, Ecole Polytechnique

Fédérale de Lausanne, 1997.

[RAS 00] RASSINEUX A., VILLON P., SAVIGNAT J.-M., STAB O., « Surface remeshing by

local hermite diffuse interpolation », International Journal for Numerical Methods in Engineering,

vol. 49, n 1-2, 2000, p. 31–49.

[WAN 97] WANG S. P., NAKAMACHI E., « The inside-outside contact search algorithm for

finite element analysis », International Journal for Numerical Methods in Engineering,

vol. 40, n 19, 1997, p. 3665–3685.

[WRI 01] WRIGGERS P., KRSTULOVIC-OPARA L., KORELC J., « Smooth C1-interpellations

for two-dimensional frictional contact problems », International Journal for Numerical

Methods in Engineering, vol. 51, n 12, 2001, p. 1469-1495.

Downloads

Published

2002-12-02

How to Cite

Chamoret, D., Rassineux, A. ., Villon, P. ., & Bergheau, J.-M. . (2002). Régularisation d’une surface de contact par approximation diffuse. European Journal of Computational Mechanics, 11(2-4), 431–445. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2623

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 3 > >>