Méthodes sans maillage de type éléments naturels pour la simulation des procédés de mise en forme

Authors

  • Iciar Alfaro Aragon Institute of Engineering Research. University of Zaragoza Edificio Betancourt. María de Luna, 5, E-50018. Zaragoza, Spain
  • Julien Yvonnet Laboratoire de Mécanique des Systèmes et des Procédés UMR 8106 CNRS-ENSAM-ESEM, 151 boulevard de l’Hôpital, F-75013 Paris
  • Elias Cueto Aragon Institute of Engineering Research. University of Zaragoza Edificio Betancourt. María de Luna, 5, E-50018. Zaragoza, Spain
  • Francesco Chinesta Laboratoire de Mécanique des Systèmes et des Procédés UMR 8106 CNRS-ENSAM-ESEM, 151 boulevard de l’Hôpital, F-75013 Paris
  • Pierre Villon Laboratoire Roberval, Université de Technologie de Compiègne BP 20529, F-60205 Compiègne
  • Manuel Doblaré Aragon Institute of Engineering Research. University of Zaragoza Edificio Betancourt. María de Luna, 5, E-50018. Zaragoza, Spain

Keywords:

meshless methods, natural elements, forming processes simulation

Abstract

In this paper, numerical simulations of forming processes are presented. A natural neighbor Galerkin method is used. One issue in this technique is the treatment of non-convex domains. To circumvent this problem, two approaches are used, the alpha-NEM and the CNEM. Another difficulty in the NEM is to achieve p-adaptivity. For this purpose, a new Hermite- NEM scheme is proposed to construct higher-order approximation schemes in the NEM.

Downloads

Download data is not yet available.

References

Belytschko T., Lu Y. Y., Gu L., « Element-free Galerkin methods », International Journal for

Numerical Methods in Engineering, vol. 37, p. 229-256, 1994.

Cueto E., Sukumar N., Calvo B., Martínez M. A., Cegoñino J., Doblaré M., « Overview and

recent developments in Natural Neighbour Galerkin methods », Archives of Computational

Methods in Engineering, vol. 10 (4), p. 307-384, 2003.

González D., Cueto E., Doblaré M., « Volumetric locking in Natural Neighbour Galerkin methods

», International Journal For Numerical Methods In Engineering, vol. 61 (4), p. 611-

, 2004.

LiuW. K., Jun S., Zhang Y. F., « Reproducing Kernel Particle Methods », International Journal

for Numerical Methods in fluids, vol. 21, p. 1081-1106, 1995.

Martínez M. A., Cueto E., Alfaro I., Doblaré M., Chinesta F., « Updated Lagrangian free surface

flow simulations with Natural Neighbour Galerkin methods », International Journal for

Numerical Methods in Engineering, vol. 60(13), p. 2105-2129, 2004.

Piper B., « Properties of local coordinates based on Dirichlet tessellations », Computer Suppl,

vol. 8, p. 227-239, 1995.

Yvonnet J., Chinesta F., Ryckelynck D., Lorong P., « The Meshless Constrained Natural Element

Method (C-NEM) for Treating Thermal Models Involving Moving Interfaces », International

Journal of Thermal Sciences, vol. 44, p. 559-569, 2005a.

Yvonnet J., Ryckelynck D., Lorong P., Chinesta F., « A New Extension of the Natural Element

Method for Non Convex and Discontinuous Problems : the Constrained Natural Element

Method », International Journal for Numerical Methods in Engineering, vol. 60(8), p. 1451-

, 2004.

Yvonnet J., Ryckelynck D., Lorong P., Chinesta F., « Simulating thermo-elato-plasticity in

large transformations with adaptive refinement in the natural element method : application

to shear banding », International Journal of Forming Processes, vol. 8, p. 347-373, 2005b.

Yvonnet J., Villon P., Chinesta F., « Approximations involving bubbles for treating incompressible

media », International Journal for Numerical Methods in Engineering, n.d.

Downloads

Published

2006-07-15

How to Cite

Alfaro, I. ., Yvonnet, J., Cueto, E. ., Chinesta, F. ., Villon, P. ., & Doblaré, M. . (2006). Méthodes sans maillage de type éléments naturels pour la simulation des procédés de mise en forme. European Journal of Computational Mechanics, 15(1-3), 29–40. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2105

Issue

Section

Original Article