RPCM: a strategy to perform reliability analysis using polynomial chaos and resampling

Application to fatigue design

Authors

  • Alban Notin Laboratoire Roberval - FR CNRS 2833 Université de Technologie Compiègne - BP20319 F-60206 Compiègne cedex
  • Nicolas Gayton Clermont Université, IFMA, EA 3867 Laboratoire de Mécanique et Ingénieries BP 10448, F-63000 Clermont-Ferrand
  • Jean Luc Dulong Laboratoire Roberval - FR CNRS 2833 Université de Technologie Compiègne - BP20319 F-60206 Compiègne cedex
  • Maurice Lemaire Clermont Université, IFMA, EA 3867 Laboratoire de Mécanique et Ingénieries BP 10448, F-63000 Clermont-Ferrand
  • Pierre Villon Laboratoire Roberval - FR CNRS 2833 Université de Technologie Compiègne - BP20319 F-60206 Compiègne cedex
  • Haidar Jaffal CETIM 52 avenue Félix Louat – BP 80067, F-60304 Senlis cedex

DOI:

https://doi.org/10.13052/EJCM.19.795-830

Keywords:

Bootstrap, confidence intervals, reliability analysis, polynomial chaos, fatigue

Abstract

Using stochastic finite elements, the response quantity can be written as a series expansion which allows an approximation of the limit state function. For computational purpose, the series must be truncated in order to retain only a finite number of terms. In the context of reliability analysis, we propose a new approach coupling polynomial chaos expansions and confidence intervals on the generalized reliability index as truncating criterion.

Downloads

Download data is not yet available.

References

Berveiller M., Sudret B., Lemaire M., “ Stochastic finite element - a non intrusive approach

by regression”, European Journal of Computational Mechanics, vol. 15, n° 1-3, p. 81-92,

Bigerelle M., Najjar D., Fournier B., Rupin N., Iost A., “ Application of Lambda Distributions

and Bootstrap analysis to the prediction of fatigue lifetime and confidence intervals”,

International Journal of Fatigue, vol. 28, p. 223-236, 2006.

Blatman G., Sudret B., “ Sparse polynomial chaos expansions and adaptive stochastic finite

elements using a regression approach”, Comptes Rendus Mécanique, vol. 336, n° 6, p. 518-

, 2008.

Blatman G., Sudret B., “ An adaptive algorithm to build up sparse polynomial chaos expansions

for stochastic finite element analysis”, Probabilistic Engineering Mechanics, vol. 25, n° 2,

p. 183-197, 2010.

Blatman G., Sudret B., Berveiller M., “ Quasi random numbers in stochastic finite element

analysis”, Mécanique et Industries, vol. 8, n° 3, p. 289-297, 2007.

Carroll R., Ruppert D., Transformation andWeighting in Regression, Chapman Hall, New York,

Cheng J., Li Q. S., Xiao R. C., “ A new artificial neural network-based response surface method

for structural reliability analysis”, Probabilistic Engineering Mechanics, vol. 23, n° 1, p. 51-

, 2008.

Choi S., Grandhi R., Canfield R., “ Structural reliability under non-gaussian stochastic behaviour”,

Computers and Structures, vol. 82, p. 1113-1121, 2004a.

Choi S., Grandhi R., Canfield R., Pettit C., “ Polynomial Chaos Expansion with Latin Hypercube

Sampling for Estimating Response Variability”, AIAA, vol. 42, n° 6, p. 1191-1198,

b.

DangVan K., Griveau B., Message O., “ On a new multiaxial fatigue criterion: theory and application.

Biaxial and Multiaxial Fatigue”, in M. Brown, K.J.Miller (eds), EFG 3, Mechanical

Engineering Publications, London, p. 479-496, 1989.

Deheeger F., Lemaire M., “ Support vector machine for efficient subset simulations: 2SMART

method”, in J. Kanda, T. Takada, H. Furuta (eds), 10th International Conference on Application

of Statistics and Probability in Civil Engineering, Proceedings and Monographs in

Engineering, Water and Earth Sciences, Taylor & Francis, p. 259-260, 2007.

DiCiccio T. J., Efron B., “ Bootstrap confidence intervals”, Statistical Science, vol. 11, n° 3,

p. 189-228, 1996.

Ditlevsen O., Madsen H., Structural reliability Methods, Wiley, Chichester, UK, 2007. Edition

3.7: Internet edition.

Echard B., Gayton N., Lemaire M., “ Reliability assessment of structures subjected to fatigue

failure using kriging methods”, Fatigue Design 2009, Senlis, France, 2009.

Echard B., Gayton N., Lemaire M., “ Structural Reliability Assessment using Kriging metamodel

and Monte Carlo simulation: AK-MCS method”, IFIP WG7.5, Taylor & Francis,

Efron B., “ Bootstrap methods: Another look at the jackknife”, The Annals of Statistics, vol. 7,

p. 1-26, 1979.

Efron B., Tibshirani R. J., An introduction to the bootstrap, Chapman Hall, New York, 1993.

Elhewy A. H., Mesbahi E., Pu Y., “ Reliability analysis of structures using neural network

method”, Probabilistic Engineering Mechanics, vol. 21, n° 1, p. 44-53, 2006.

Field R., “ Numerical methods to estimate the coefficients of the polynomial chaos expansion”,

Proc. 15th ASCE Engineering Mechanics Conference, New York, USA, 2002.

Field R., Grigoriu M., “ On the accuracy of the polynomial approximation”, Probabilistic Engineering

Mechanics, vol. 19, p. 65-80, 2004.

Gayton N., Bourinet J., Lemaire M., “ CQ2RS: a new statistical approach to the response surface

method for reliability analysis”, Structural Safety, vol. 25, p. 99-121, 2003.

Gayton N., Lemaire M., “ Reliability assessment of structures subjected to fatigue failure”,

Ships and offshore structures, vol. 4, n° 3, p. 229-239, 2009.

Ghanem R., Spanos P., Stochastic finite elements: a spectral approach, Springer-Verlag, New

York, 1991. Revised Edition published by Dover in 2003.

Giunta A. A., Watson L. T., A Comparison of Approximation Modeling Techniques: Polynomial

Versus Interpolating Models, Technical report, 1998.

Heiermann K., Riesch-Oppermann H., Huber N., “ Reliability confidence intervals for ceramic

components as obtained from bootstrap methods and neural networks”, Computational Materials

Science, vol. 34, n° 1, p. 1-13, 2005.

Hesterberg T., Bootstrap, Technical report, Insightful Corp, 2007.

Hurtado J. E., “ Filtered importance sampling with support vector margin: a powerful method

for structural reliability analysis”, Structural Safety, vol. 29, p. 2-15, 2007.

Isukapalli S., Uncertainty analysis of transport-transformation models, PhD thesis, The State

University of New Jersey, 1999.

Kaymaz I., “ Application of kriging method to structural reliability problems”, Structural

Safety, vol. 27, n° 2, p. 133-151, 2005.

Keese A., Numerical Solution of Systems with Stochastic Uncertainties: A General Purpose

Framework for Stochastic Finite Elements, PhD thesis, Technischen Universität Braunschweig,

Lemaire M., Structural Reliability - Static Mechanical coupling, ISTE, 2009.

Lemaire M., Pendola M., “ Phimeca Soft”, Structural Safety, vol. 28, p. 130-149, 2006.

LeMaître O., Reagan M., Najm H., Ghanem R., Knio O., “ A Stochastic Projection Method for

Fluid Flow II. Random Process”, Journal of Computational Physics, vol. 181, n° 1, p. 9-44,

Li G., Liu Z., “ Surrogate-based Reliability Analysis Using Support Vector Machine”, AIP

Conference Proceedings, vol. 1233, n° 1, p. 893-898, 2010.

Liu Y., Mahedevan S., “ Stochastic fatigue damage modeling under variable amplitude loading”,

International Journal of Fatigue, vol. 29, p. 1149-1161, 2007.

Malliavin P., Stochastic analysis, Springer, 1997.

Marrel A., Iooss B., Laurent B., Roustant O., “ Calculations of Sobol indices for the Gaussian

process metamodel”, Reliability Engineering and System Safety, vol. 94, p. 742-751, 2009.

McKay M. D., Beckman R. J., Conover W. J., “ A comparison of three methods for selecting

values of input variables in the analysis of output from a computer code”, Technometrics,

vol. 42, n° 1, p. 55-61, 2000.

Novak D., Lawanwisut W., Bucher C., “ Simulation of Random Fields Based on Orthogonal

Transformations of Covariance Matrix and Latin Hypercube Sampling”, in G. Schuëller,

P. Spanos, A. D. Kiureghian, M. Pestana (eds), International conference on Monte Carlo

simulations, Swets & Zeitlinger, p. 129-136, 2001.

Olsson A. M. J., Sandberg G. E., “ Latin Hypercube Sampling for Stochastic Finite Element

Analysis”, Journal of Engineering Mechanics, vol. 128, n° 1, p. 121-125, 2002.

Papadrakakis M., Papadopoulos V., Lagaros N. D., “ Structural reliability analysis of elasticplastic

structures using neural networks and Monte Carlo simulation”, Computer Methods

in Applied Mechanics and Engineering, vol. 136, p. 145-163, 1996.

Pellissetti M., Schuëller G., “ On general purpose software in structural reliability - An

overview”, Structural Safety, vol. 28, p. 3-16, 2006.

Puig B., Poirion F., Soize C., “ Non-Gaussian simulation using Hermite polynomial expansion:

convergences”, Prob. Engr. Mech., vol. 17, p. 253-264, 2002.

Rajashekhar M. R., Ellingwood B. R., “ A new look at the response surface approach for reliability

analysis”, Structural Safety, vol. 12, n° 3, p. 205-220, 1993.

Reh S., Beley J., Mukherjee S., Khor E., “ Probabilistic finite element using ANSYS”, Structural

Safety, vol. 28, p. 17-43, 2006.

Rocco C. M., Moreno J. A., “ Fast Monte Carlo reliability evaluation using support vector

machine”, Reliability Engineering & System Safety, vol. 76, n° 3, p. 237-243, 2002.

Ryan T., Modern Regression Methods, Wiley, New York, 1997.

Sain T., Chandra-Kishen J., “ Probabilistic assessment of fatigue crack growth in concrete”,

International Journal of Fatigue, vol. 30, p. 2156-2164, 2008.

Shawe-Taylor J., Cristianini N., Support Vector Machines and other kernel-based learning

methods, Cambridge University Press, 2000.

Soize C., Ghanem R., “ Physical systems with random uncertainties: chaos representations

with arbitrary probability measure”, SIAM Journal on Scientific Computing, vol. 26, n° 2,

p. 395-410, 2004.

Sudret B., “ Global sensitivity analysis using polynomial chaos expansion”, Reliability Engineering

& System Safety, vol. 93, n° 7, p. 964-979, 2008.

Sudret B., Kiureghian A. D., “ Comparison of finite element reliability methods”, Probabilistic

Engineering Mechanics, vol. 17, p. 337-348, 2002.

Walz G., Riesch-Oppermann H., “ Probabilistic fracture mechanics assessment of flaws in turbine

disks including quality assurance procedures”, Structural Safety, vol. 28, p. 273-288,

Wiener N., “ The homogeneous chaos”, American Journal of Mathematics, vol. 60, p. 897-936,

Xiu D., Karniadakis G., “ The Wiener-Askey polynomial chaos for stochastic differential equations”,

SIAM Journal of Scientific Computing, vol. 24, p. 619-644, 2002.

Zheng Y., Das P. K., “ Improved response surface method and its application to stiffened plate

reliability analysis”, Engineering Structures, 2000.

Downloads

Published

2010-08-06

How to Cite

Notin, A. ., Gayton, N. ., Dulong, J. L. ., Lemaire, M., Villon, P. ., & Jaffal, H. . (2010). RPCM: a strategy to perform reliability analysis using polynomial chaos and resampling: Application to fatigue design. European Journal of Computational Mechanics, 19(8), 795–830. https://doi.org/10.13052/EJCM.19.795-830

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 > >>