A shell finite element for viscoelastically damped sandwich structures

Authors

  • El mostafa Daya Laboratoire de Physique et Mécanique des Matériaux UMR CNRS 7554, I.S.G.M.P., Université de Metz Ile de Saulcy, F-57045 Metz Cedex 01
  • Michel Potier-Ferry Laboratoire de Physique et Mécanique des Matériaux UMR CNRS 7554, I.S.G.M.P., Université de Metz Ile de Saulcy, F-57045 Metz Cedex 01

Keywords:

Finite element, plate, vibrations, viscoelasticity, sandwich, damping

Abstract

In this paper, a shell finite element is proposed for viscoelastically damped sandwich structures, in which a thin viscoelastic layer is sandwiched between identical elastic layers. The sandwich finite element is obtained by assembling three elements throughout the thickness of the sandwich structure. Using specific assumptions and displacement continuity at the interfaces, one reduces to eight the number of degrees of freedom per node that are the longitudinal displacements of the elastic layers, the deflection and three rotations. The finite element computations have been compared with known analytical, numerical and experimental data concerning the vibrations of sandwich beams, plates and shells.

Downloads

Download data is not yet available.

References

[ALA 84] ALAM N, ASNANI NT., “Vibration and damping of multi layered cylindrical shell”,

Part I and II, AIAA Journal, vol. 22, p. 803-10, p. 975-81, 1984.

[BAB 98] BABER T.T., Maddox R.A., Orozco C. E., “A finite element model for harmonically

excited viscoelestic sandwich beams”, Computers and Structures, vol. 66, n° 1, p. 105-

, 1998.

[BAT 82] BATHE KJ., Finite element procedures in engineering analysis, Prentice-Hall,

[BAT 90] BATHOZ JL, DHATT G. Modélisation des structures par éléments finis. Coques,

Hermès, 1990.

[CHE 99] CHEN X, CHEN HL, HU LE., “Damping prediction of sandwich structures by orderreduction-

iteration approach”, Journal of Sound and Vibration, vol. 222, n° 5, p. 803-

, 1999.

[CUP 95] CUPIAL P., NIZIOL J., “Vibration and damping analysis of three-layered composite

plate with viscoelastic mid-layer”, Journal of Sound and Vibration, vol. 183, n° 1, p. 99-

, 1995.

[DAY 01] DAYA E.M., POTIER-FERRY M., “A numerical method for nonlinear eigenvalue

problem, application to vibrations of viscoelastic structures”, Computers and Structures,

vol. 79, n° 5, p. 533-541, 2001.

[DIT 67] DITARANTO RA, BLASINGAME W., “Composite damping of vibrating sandwich

beams”, Journal Engng Industry, vol. 89B, p. 633-638, 1967.

[FER 80] FERRY JD., Viscoelastic properties of polymers, 3rd edition Wiley, New York,

[GAN 96] GANAPATHI M., POLIT O., TOURATIER M., “Shear bending and torsion modeling for

multilayered beams of rectangular cross-section”, Preceeding of third international

conference on composite engineering, New Orleans, LA, p. 853-854, 1996.

[HE 96] HE J.F, MA B.A., “Vibration analysis of viscoelastically damped sandwich shells”,

Shock and Vibration Bulletin, vol. 3, n° 6, p. 403-417, 1996.

[HU 00] HU YC, HUANG SC., “The frequency response and damping effect of three-layer thin

shell with viscoelastic core”, Computers and Structures, vol. 76, p. 577-591, 2000.

[JOH 81] JOHNSON CD, KIENHOLZ DA, ROGERS LC., “Finite element prediction of damping

in beams with constrained viscoelastic layer”, Shock and Vibration Bulletin, vol. 51, n° 1,

p. 71-81, 1981.

[KER 59] KERWIN EM., “Damping of flexural waves by a constrained viscoelastic layer”,

Journal of the Acoustic Society of America, vol. 31, n° 7, p. 952-962, 1959.

[LAN 93] LANDIER J., Modélisation et étude experimentale des propriétés amortissantes des

tôles sandwich, Ph. D. Thesis, University of Metz, 1993.

[LU 79] LU YP, KILLIAN JW, EVERSTINE GC., “Vibrations of three layered damped sandwich

plate composites”, Journal of Sound and Vibration, vol. 64, n° 1, p. 63-71, 1979.

[MA 92] MA B.A, HE J.F., “Finite element analysis of viscoelastically damped sandwich

plates”, Journal of Sound and Vibration, vol. 52, p. 107-123, 1992.

[MEA 69] MEAD DJ, MARKUS S., “The forced vibration of three-layer damped sandwich

beam with arbitrary boundary conditions”, Journal of Sound and Vibration, vol. 10, p.

-175, 1969.

[ORA 74] ORAVSKY V, MARKUS S, SIMKOVA O., “New approximate method of finding the

loss factors of a sandwich cantilever”, Journal of Sound and Vibration, vol. 33, p. 335-

, 1974.

[RAO 78] RAO DK., “Frequency and loss factor of sandwich beams under various boundary

conditions”, Journal of Mechanical Engineering Sciences, vol. 20, n° 5, p. 271-282,

[RAM 94] RAMESH TC, GANESAN N., “Finite element analysis of conical shells with a

constrained viscoelastic layer”, Journal of Sound and Vibration, vol. 171, n° 5, p. 577-

, 1994.

[RIK 93] RIKARDS R, CHATE A, BARKANOV E., “Finite element analysis of damping the

vibrations of laminated composites”, Computers and Structures, vol. n° 6, p. 1005-1015,

[SAD 84] SADEK EA., “Dynamic optimisation of a sandwich beam”, Computers and

Structures, vol. 19, n° 4, p. 605-615, 1984.

[SAI 99] SAINSBURY MG , ZHANG QJ., “The Galerkin element method applied to the

vibration of damped sandwich beams”, Computers and Structures, vol. 71, p. 239-256,

[SON 81] SONI ML., “Finite element analysis of viscoelastically damped sandwich

structures”, Shock and Vibration Bulletin, vol. 55, n° 1, 97-109, 1981.

[WIL 65] WILKINSON JH., The algebraic eigenvalue problem, Clarendon Press, Oxford,

[YAN 72] YAN MJ, DOWELL EH. “Governing equations for vibrating constrained-layer

damping sandwich plates and beams”, Journal of Applied Mechanics, vol. 94, p. 1041-

, 1972.

Downloads

Published

2002-01-24

How to Cite

Daya, E. mostafa ., & Potier-Ferry, M. . (2002). A shell finite element for viscoelastically damped sandwich structures. European Journal of Computational Mechanics, 11(1), 39–56. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2669

Issue

Section

Original Article