Résolution des équations de Navier-Stokes et Détection des bifurcations stationnaires par une Méthode Asymptotique-Numérique
Keywords:
non-linear computation, perturbation method, finite element method, Navier-Stokes equations, stationary bifurcationAbstract
Perturbation methods (asymptotic expansions) are usually considered as powerful methods for solving many kinds of non-linear problems. However, these methods are very often applied in a pure/y analytic framework, and the calculation is limited to the first few terms of the series. Since a few years, we have shown thal the combination of perturbation techniques and finite element method can lead to a robust numerical method for some categories of non-linear problems. In this paper, we apply these techniques to compute branches of stationary solutions of Navier-Stokes equations and to detect stationary bifurcations.
Downloads
References
[Azr 93] AZRAR L., «Étude du comportement post-critique des coques cylindriques par une
Méthode Asymptotique Numérique», Thèse de l'Université de Metz, février 1993.
[ACDP 92] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., «An asymptoticnumerical
method to compute bifurcating branches» New Advances in Computational
Structural Mechanics, P. Ladevèze and O.C. Zienkiewicz Eds, Studies in Applied
Mechanics Vol. 32, ppll7-131, Elsevier, Amsterdam, 1992.
[ACDP 93] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., «An asymptoticnumerical
method to compute the post-buck1ing behavior of e1astic plates and
shells», International Journal for Numerical Methods in Engineering, Vol. 36,
pp1251-1277, 1993.
[BG 81] BAKER G.A., GRAVES MORRIS P., Padé Approximants, Part I : Basic Theory,
Encyclopedia of Mathematics and its Applications, Vol. 13, Addison-Wesley
Publishing Company, New York, 1981.
[Bat67] BATCHELOR G.K., An introduction to fluid dynamics, Cambridge University
Press, Cambridge, 1967.
[Ben95] BEN SAADI E.H., Calcul des branches de solutions périodiques et des points de
bifurcation de Hopf par une Méthode Asymptotique Numérique, Thèse de l'Université
de Metz, mars 1995.
[Bou94] BOUTYOUR E.H., Calculs non-linéaires par des Méthodes Asymptotiques
Numériques : applications aux structures élastiques, Thèse de l'Université de Metz,
septembre 1994.
[CDP94] COCHELIN B, DAMIL N., POTIER-FERRY M., «Asymptotic Numerical Method and
Padé Approximants for non-linear elastic structures>>, International Journal for
Numerical Methods in Engineering, Vol. 37, pp 1187-1213, 1994.
[CDP94] COCHELIN B, DAMIL N., POTIER-FERRY M., «The Asymptotic Numerical Method,
an efficient perturbation technique for nonlinear structural mechanics», Revue
Européenne des Elements Finis, Vol. 3, No 2, pp 281-297, 1994.
[Coc94] COCHELIN B., «A path following technique via an Asymptotic Numerical
Method», Computers and Structures, Vol. 53, No 5, pp 1181-1192,1994.
[Coc94] COCHELIN B., Méthodes Asymptotiques Numériques pour Je calcul non linéaire
géométrique des structures élastiques, Habilitation à diriger des recherches, Université
de Metz, mars 1994.
[Dam90] Damil N., De la théorie de bifurcation au calcul des structures, Thèse d'état,
Université Hassan II, Casablanca, juin 1990.
[DP90] DAMIL N., POTIER-FERRY M. «A new method to compute perturbed bifurcations:
Application to the buckling of imperfect elastic structures», International Journal of
Engineering Sciences, Vol 28, N° 3, pp704-719, 1990.
[DPB94] DAMIL N., POTIER-FERRY M., BRAIKAT B., «Une technique de perturbation pour le
calcul des structures avec fortes non linéarités», Comptes Rendus de l'Académie des
Sciences, t 318, série Il, pp 713- 719, 1994.
[Hin91] HINSH F.J., Perturbation methods, Cambridge Texts in Applied Mathematics,
Cambridge University Press, Cambridge, 1991.
[Hir88] HIRSH C., Numerical computation of internai and external flows, Vol. 1:
fundamentals of numerical discretisation', Eds John Wiley and Sons, New York,
[IJ91] Iooss G., JOSEPH 0.0., Elementary stability and bifurcation theory, Springer
Verlag, Berlin Heidelberg, 1991.
[KYN074] KAWAHARA M., YOSHIMURA N., NAKAGAWA K., ÜHASAKA H., 1974, «Steady
and unsteady finite element analysis of incompressible viscous fluid», International
Journal for Numerical Method in Engineering, Vol. 10, pp 436-456, 1974.
[Nay73] NAYFEH A., Perturbation methods, Eds John Wiley and Sons, New York, 1973.
[NP81] NOOR A.K., PETERS J.M., «Tracing post-limit paths with reduced basic
technique», Computer Methods in Applied Mechanics and Engineering, Vol. 28,
pp 217-240, 1981.
[Pot 87] POTIER-FERRY M., «Foundations of elastic post-buckling theory», in Buckling
and Post-Buckling, Lecture Notes in Physics,Vol. 288, pp 1-82 Springer-Verlag,
Berlin Heidelberg, 1987.
[RL93] RAFFAI R., LAURE P., 1993, «The influence of an axial mean on the Couette
Taylor problem», Europeen Journal of Mechanics, B/fluids 12 n°3, pp 277-288,
[SCV86] SEGAL A., CURVELIER C., V AN STEEN HO VEN A.A., Finite element methods of
Navier-Stokes equations, Reidel Publishing Company, Dordrecht, Netherland, 1986.
[Sey88] SEYDEL R., For equilibrium to chaos. Pratical bifurcations theory and stability
analysis, Elsevier, New York, 1988.
[Tem77] TEMAM R., Navier-Stokes equations, theory and numerical analysis, 2° edition,
North Holland, Amsterdam, 1977.
[TC84] THOMASSET F., CAUSSIGNAC P., Équations de Navier-Stokes bidimentionnelles,
Bibliothèque MODULEF, Vol. 36, Version 84.
[Van70] V AN DYKE M., «Analysis and improvement of perturbation series», Journal of
Applied Mathematics, Vol. 27, no 4, pp 423-450, 1970.
[Van84] VAN DYKE M., «Computer-extended series» Ann. Review of Fluid Mechanics,
Vol. 16, pp 287-309, 1984.
[WW91] WAGNER W., WRIGGERS P., Calculation of bifurcation points via fold curves,
Non linear Computational Mechanics, Wagner W., Wriggers P., Eds, pp 64-84,
Springer Verlag, Berlin Heidelberg, 1991.
[ZT91] ZIENKIEWICZ O.C., TAYLOR R.L., The finite element method, Fourth edition,
Mac Graw Hill, London, 1991.