Methodes asymptotiques numeriques pour Ia plasticite
Keywords:
non-linear computation, perturbation, finite element, asymptotic-numerical metlwd, strong non-linearity, plasticityAbstract
In this paper, we extend to strongly non-linear problems the symptotic-numerical methods, that have been previously developed in an elastic framework. Within plasticity, the tangent modulus may vary discontinuously, so the solution paths can not be represented in the form of series. In this paper, we present some application of perturbation techniques to problems regularised and discretized by finite element method. Regularisations using power law or hyperbolic type law are considered.
Downloads
References
[ACDP93] AzRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., 1993, "An asymptoticnumerical
method to compute the post-buckling behaviour of elastic plates and shells",
International Journal for Numerical Methods in Engineering, Vol. 36, pp 1251-1277.
[Amm96] AMMAR S., 1996, "Methode asymptotique perturbee appliquee a Ia resolution de
problemes non-lineaires en grande rotation et grand deplacement", These de l'Universite
Laval, Quebec.
[BDP97] BRAIKAT B., DAMIL N., POTIER-FERRY M., 1997, "Une methode iterative de
continuation", Troisieme congres de Mecanique, Tetouan, Maroc.
[BG81] BAKER G.A., GRAVES MORRIS P., 1981, Pade Approximants, Part I: Basic Theory,
Encyclopaedia of Mathematics and its Applications, Vol. 13, Addison-Wesley
Publishing Company, New York.
[Bra95] BRAIKAT B., 1995, "Methode asymptotique numerique et fortes non-linearites",
These de troisieme cycle de l'Universite Hassan II, Faculte des Sciences Ben M'Sik,
Casablanca.
[CDP94a] COCHEUN B, DAMIL N., POTIER-FERRY M., 1994 a, "Asymptotic Numerical
Method and Pade Approximants for non-linear elastic structures", International Journal
for Numerical Methods in Engineering, Vol. 37, pp 1187-1213.
[CDP94b] COCHEUN B, DAMIL N., POTIER-FERRY M., 1994 b, "The Asymptotic Numerical
Method, an efficient perturbation technique for non-linear structural mechanics", Revue
Europeenne des Elements Finis, Vol. 3, W 2, pp 281-297.
[Coc94] COCHEUN B., 1994, "A path following technique via an Asymptotic Numerical
Method", Computers and Structures, Vol. 53, W 5, pp 1181-1192.
[DP90] DAMIL N., POTIER-FERRY M., 1990, "A new method to compute perturbed
bifurcations: Application to the buckling of imperfect elastic structures", International
Journal of Engineering Sciences, Vol28, W 3, pp 704-719.
[DPB94] DAMIL N., POTIER-FERRY M., BRAIKAT B.,1994, "Une technique de perturbation
pour le calcul des structures avec fortes non-linearites", Comptes Rendus de l'Acadernie
des Sciences, t 318, serie II, pp 713-719.
[Dyk84] VAN DYKE M., 1984, "Computer-extended series" Ann. Review of Fluid
Mechanics, Vol. 16, pp 287-309.
[Hin91] HINCH F.J., 1991, "Perturbation methods", Cambridge Texts in Applied
Mathematics, Cambridge University Press, Cambridge.
[LC85] LEMAITRE J., CHABOCHE J.L., 1985, "Mecanique des materiaux solides", Dunod,
Paris.
[LP93] LEGER A., POTIER-FERRY M., 1993, "Elastic-Plastic post-buckling from a
heterogeneous state", J. Mech. Phys. Solids Vol. 4, pp. 783-807.
[Naj97] NAIAH A., 1997, Calcul non lineaire des structures par des methodes asymptotiques
numeriques et acceleration de la convergence, These de 3tme cycle de l'Universite
Hassan II, Faculte des Sciences Ben M'sik, Casablanca.
[Nay73] NAYFEHA., 1973, "Perturbation methods", John Wiley and Sons, New York.
[NP81] NooR A.K., PETERS J.M., 1981, "Tracing post-limit paths with reduced basis
technique", Computer Methods in Applied Mechanics and Engineering, Vol. 28, pp 217-
[Padl892] PADE H., 1892, "Sur Ia representation approcbee d'une fonction par des fractions
rationnelles". Ann. de !'Ecole Normale Sup., 3° serie, Vol. 9, Supp, 3-93.
[PDB97] POTIER-FERRY M., DAMIL N., BRAIKAT 8., DESCAMPS J., CADOU J.M., CAO H.L.,
ELHAGE HUSSEIN A., 1997 "Traitement des fortes non-linearites par Ia methode
asymptotique numerique". Comptes Rendus de l'Academie des Sciences, t.324, serie II,
pp 171-177.