Methodes asymptotiques numeriques pour Ia plasticite

Authors

  • Bouazza Braikat Laboratoire de calcul scientifique en mecanique Universite Hassan II, Faculte des sciences Ben M'Sik Casablanca, Maroc
  • Noureddine Damil Laboratoire de calcul scientifique en mecanique Universite Hassan II, Faculte des sciences Ben M'Sik Casablanca, Maroc
  • Michel Potier-Ferry Laboratoire de physique et mecanique des materiaux URA CNRS 1215, ISGMP, Universite de Metz. lle du Saulcy 57045 Metz cedex OJ

Keywords:

non-linear computation, perturbation, finite element, asymptotic-numerical metlwd, strong non-linearity, plasticity

Abstract

In this paper, we extend to strongly non-linear problems the symptotic-numerical methods, that have been previously developed in an elastic framework. Within plasticity, the tangent modulus may vary discontinuously, so the solution paths can not be represented in the form of series. In this paper, we present some application of perturbation techniques to problems regularised and discretized by finite element method. Regularisations using power law or hyperbolic type law are considered.

 

Downloads

Download data is not yet available.

References

[ACDP93] AzRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., 1993, "An asymptoticnumerical

method to compute the post-buckling behaviour of elastic plates and shells",

International Journal for Numerical Methods in Engineering, Vol. 36, pp 1251-1277.

[Amm96] AMMAR S., 1996, "Methode asymptotique perturbee appliquee a Ia resolution de

problemes non-lineaires en grande rotation et grand deplacement", These de l'Universite

Laval, Quebec.

[BDP97] BRAIKAT B., DAMIL N., POTIER-FERRY M., 1997, "Une methode iterative de

continuation", Troisieme congres de Mecanique, Tetouan, Maroc.

[BG81] BAKER G.A., GRAVES MORRIS P., 1981, Pade Approximants, Part I: Basic Theory,

Encyclopaedia of Mathematics and its Applications, Vol. 13, Addison-Wesley

Publishing Company, New York.

[Bra95] BRAIKAT B., 1995, "Methode asymptotique numerique et fortes non-linearites",

These de troisieme cycle de l'Universite Hassan II, Faculte des Sciences Ben M'Sik,

Casablanca.

[CDP94a] COCHEUN B, DAMIL N., POTIER-FERRY M., 1994 a, "Asymptotic Numerical

Method and Pade Approximants for non-linear elastic structures", International Journal

for Numerical Methods in Engineering, Vol. 37, pp 1187-1213.

[CDP94b] COCHEUN B, DAMIL N., POTIER-FERRY M., 1994 b, "The Asymptotic Numerical

Method, an efficient perturbation technique for non-linear structural mechanics", Revue

Europeenne des Elements Finis, Vol. 3, W 2, pp 281-297.

[Coc94] COCHEUN B., 1994, "A path following technique via an Asymptotic Numerical

Method", Computers and Structures, Vol. 53, W 5, pp 1181-1192.

[DP90] DAMIL N., POTIER-FERRY M., 1990, "A new method to compute perturbed

bifurcations: Application to the buckling of imperfect elastic structures", International

Journal of Engineering Sciences, Vol28, W 3, pp 704-719.

[DPB94] DAMIL N., POTIER-FERRY M., BRAIKAT B.,1994, "Une technique de perturbation

pour le calcul des structures avec fortes non-linearites", Comptes Rendus de l'Acadernie

des Sciences, t 318, serie II, pp 713-719.

[Dyk84] VAN DYKE M., 1984, "Computer-extended series" Ann. Review of Fluid

Mechanics, Vol. 16, pp 287-309.

[Hin91] HINCH F.J., 1991, "Perturbation methods", Cambridge Texts in Applied

Mathematics, Cambridge University Press, Cambridge.

[LC85] LEMAITRE J., CHABOCHE J.L., 1985, "Mecanique des materiaux solides", Dunod,

Paris.

[LP93] LEGER A., POTIER-FERRY M., 1993, "Elastic-Plastic post-buckling from a

heterogeneous state", J. Mech. Phys. Solids Vol. 4, pp. 783-807.

[Naj97] NAIAH A., 1997, Calcul non lineaire des structures par des methodes asymptotiques

numeriques et acceleration de la convergence, These de 3tme cycle de l'Universite

Hassan II, Faculte des Sciences Ben M'sik, Casablanca.

[Nay73] NAYFEHA., 1973, "Perturbation methods", John Wiley and Sons, New York.

[NP81] NooR A.K., PETERS J.M., 1981, "Tracing post-limit paths with reduced basis

technique", Computer Methods in Applied Mechanics and Engineering, Vol. 28, pp 217-

[Padl892] PADE H., 1892, "Sur Ia representation approcbee d'une fonction par des fractions

rationnelles". Ann. de !'Ecole Normale Sup., 3° serie, Vol. 9, Supp, 3-93.

[PDB97] POTIER-FERRY M., DAMIL N., BRAIKAT 8., DESCAMPS J., CADOU J.M., CAO H.L.,

ELHAGE HUSSEIN A., 1997 "Traitement des fortes non-linearites par Ia methode

asymptotique numerique". Comptes Rendus de l'Academie des Sciences, t.324, serie II,

pp 171-177.

Downloads

Published

1997-03-14

How to Cite

Braikat, B. ., Damil, N. ., & Potier-Ferry, M. . (1997). Methodes asymptotiques numeriques pour Ia plasticite. European Journal of Computational Mechanics, 6(4), 337–357. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3443

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 > >>