Multiscale analysis of instabilities in heterogeneous materials using ANM and multilevel FEM

Authors

  • Saeid Nezamabadi Laboratoire de Mécanique et Génie Civil (LMGC), Université Montpellier 2, UMR CNRS 5508, CC048 Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
  • Hamid Zahrouni Laboratoire d’Étude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine, UMR CNRS 7239, Ile du Saulcy F-57045, Metz Cedex 01, France
  • Julien Yvonnet Laboratoire Modélisation et Simulation Multi Échelle (MSME), Université Paris Est, UMR CNRS 8208, 5 Bd Descartes, 77454 Marne-la-Vallée Cedex 02, France
  • Michel Potier-Ferry Laboratoire d’Étude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine, UMR CNRS 7239, Ile du Saulcy F-57045, Metz Cedex 01, France

DOI:

https://doi.org/10.13052/17797179.2012.727350

Keywords:

asymptotic numerical method, nonlinear homogenisation, multiscale finite element method, instabilities, buckling

Abstract

In this study, we propose a numerical technique which combines a perturbation approach (asymptotic numerical method) and a multilevel finite element analysis. This procedure allows dealing with instability phenomena in the context of heterogeneous materials where buckling may occur at both macroscopic and/or microscopic scales. Different constitutive relations are applied and geometrical non-linearity is taken into account at both scales. Numerical examples involving instabilities at both micro and macro levels are presented.

Downloads

Download data is not yet available.

References

Abeyaratne, R., & Triantafyllidis, N. (1984). An investigation of localization in a porous elastic material

using homogenization theory. Journal of Applied Mechanics, 51, 481–486.

Assidi, M., Zahrouni, H., Damil, N., & Potier-Ferry, M. (2009). Regularization and perturbation

technique to solve plasticity problems. International Journal of Material Forming, 2, 1–14.

Cochelin, B. (1994). A path following technique via an asymptotic numerical method. Computers and

Structures, 53, 1181–1192.

Cochelin, B., Damil, N., & Potier-Ferry, M. (2007). Méthode asymptotique numérique, (Asymptotic

numerical method). Paris: Hermès Science.

deBotton, G., Hariton, I., & Socolsky, E.A. (2006). Neo-Hookean fiber reinforced composites in finite

elasticity. Journal of the Mechanic and Physics of Solids, 54, 533–559.

Descamps, J., Cao, H.L., & Potier-Ferry, M. (1997). An asymptotic numerical method to solve large

strain viscoplastic problems. In D.R.J. Owen, E. Oñate, & E. Hinton (Eds.), Computational plasticity,

fundamentals and applications (Vol. 13, pp. 393–400). Barcelona: C.I.M.N.E.

Drapier, S., Grandidier, J.C., & Potier-Ferry, M. (1999). Towards a numerical model of the compressive

strength for long fihre composites. European Journal of Mechanics A/Solids, 18, 69–92.

Drapier, S., Grandidier, J.C., & Potier-Ferry, M. (2001). A structural approach of plastic micro buckling

in long fibre composites: Comparison with theoretical and experimental results. International

Journal of Solids and Structures, 38, 3877–3904.

Feyel, F. (2003). A multilevel finite element method (FE2) to describe the response of highly nonlinear

structures using generalized continua. Computer Methods in Applied Mechanics and Engineering,

, 3233–3244.

Geymonat, G., Müller, S., & Triantafyllidis, N. (1993). Homogenization of nonlinearly elastic materials:

Microscopic bifurcation and macroscopic loss of rank-one convexity. Archive for Rational Mechanics

and Analysis, 122, 231–290.

Grandidier, J.C., Casari, P., & Jochum, C. (2012). A fibre direction compressive failure criterion for long

fibre laminates at ply scale, including stacking sequence and laminate thickness effects. Composite

Structures, 94, 3799–3806.

Lopez-Pamies, O., & Ponte Castañeda, P. (2005). Second-order estimated for the macroscopic response

and loss of ellipticity in porous rubbers at large deformations. Journal of Elasticity, 76, 247–287.

Michel, J.C., Lopez-Pamies, O., Ponte Castanñeda, P., & Triantafyllidis, N. (2007). Microscopic and

macroscopic instabilities in finitely strained porous elastomers. Journal of the Mechanics and

Physics of Solids, 55, 900–938.

Miehe, C. (2003). Computational micro-to-macro transitions for discretized micro-structures of heterogeneous

materials at finite strains based on the minimization of averaged incremental energy.

Computer Methods in Applied Mechanics and Engineering, 192, 559–591.

Miehe, C., Schröder, J., & Becker, M. (2002). Computational homogenization analysis in finite elasticity:

Material and structural instabilities on the micro- and macro-scales of periodic composites and

their interactions. Computer Methods in Applied Mechanics and Engineering, 191(4), 4971–5005.

Nezamabadi, S., Yvonnet, J., Zahrouni, H., & Potier-Ferry, M. (2009). A multilevel computational

strategy for microscopic and macroscopic instabilities. Computer Methods in Applied Mechanics and

Engineering, 198, 2099–2110.

Nezamabadi, S., Zahrouni, H., & Yvonnet, J. (2011). Solving hyperelastic material problems by

asymptotic numerical method. Computational Mechanics, 47, 77–92.

Nezamabadi, S., Zahrouni, H., Yvonnet, J., & Potier-Ferry, M. (2010a). A multiscale finite element

approach for buckling analysis of elastoplastic long fiber composites. International Journal for

Multiscale Computational Engineering, 8, 287–301.

Nezamabadi, S., Zahrouni, H., Yvonnet, J., Potier-Ferry, M. (2010b). Multiscale second order homogenization

using asymptotic numerical method, IV European Conference on Computational Mechanics,

–21 May 2010, Paris, France.

Wisnom, M.R. (1991). The effect of specimen size on the bending strength of unidirectional carbon

fibre-epoxy. Composite Structures, 18, 47–63.

Wisnom, M.R., Atkinson, J.W., & Jones, M.I. (1997). Reduction in compressive strain to failure of

unidirectional carbon fibre-epoxy with increasing specimen size in pin-ended buckling tests.

Composites Science and Technology, 57, 1303–1308.

Zahrouni, H., Aggoune, W., Brunelot, J., & Potier-Ferry, M. (2004). Asymptotic numerical method for

strong nonlinearities. Revue Européenne des Eléments Finis, 118, 13–97.

Zahrouni, H., Potier-Ferry, M., Elasmar, H., & Damil, N. (1998). Asymptotic numerical method for

nonlinear constitutive laws. Revue Européenne des Eléments Finis, 7, 841–869.

Downloads

Published

2012-06-06

How to Cite

Nezamabadi, S. ., Zahrouni, H. ., Yvonnet, J. ., & Potier-Ferry, M. . (2012). Multiscale analysis of instabilities in heterogeneous materials using ANM and multilevel FEM. European Journal of Computational Mechanics, 21(3-6), 280–289. https://doi.org/10.13052/17797179.2012.727350

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 > >>