Investigating the Design Parameters’ Influence in a Fast Switching Valve – An Approach to Simplify the Design Process
DOI:
https://doi.org/10.13052/ijfp1439-9776.2424Keywords:
Fast Switching Valve, Sensitivity Analysis, Design SimplificationAbstract
Designing Fast Switching Valves (FSVs) for digital displacement units is a complicated process pushing the technology to the limit. The system dynamics and the interaction of the fluid, mechanical structure, actuator and control hence calls for advanced modelling, including CFD and FEA, to capture, e.g. fluid stiction effects, end-damping and impact contact stresses. Unfortunately, this essentially renders optimization processes infeasible due to the computational burden involved, although this is precisely what is required for this type of complex multi-domain problem.
Therefore, the focus of the current article is on how a complex mechatronic design problem, like designing an FSV, may be aided by considering decomposing and simplification through sensitivity analysis and analyzing correlations between the design and output parameters. This is done to significantly reduce the original design problem without compromising the investigated design space. The paper focuses specifically on the results related to an FSV and the flow delivering part of this, showing the influence of the various design parameters. However, the approach and considerations may be generalized to an other areas as well.
Downloads
References
Ehsan, M., Rampen, W. H. S., and Salter, S. H., 1997. “Modeling of Digital-Displacement Pump-Motors and Their Application as Hydraulic Drives for Nonuniform Loads”. ASME J. Dyn. Sys., Meas., Control,122(1), pp. 210–215.
Roemer, D. B., Johansen, P., Bech, M. M., and Pedersen, H. C., 2015. “Optimum design of a moving coil actuator for fast switching valves in digital hydraulic pumps and motors”. IEEE/ASME Trans. Mechatronics,20(6), pp. 2761–2770.
Winkler, B., Plöckinger, A., and Scheidl, R., 2010. “A novel piloted fast switching multi poppet valve”. Int. J. Fluid Power,11(3), pp. 7–14.
Uusitalo, J. P., Ahola, V., Soederlund, L., Linjama, M., and Kettunen, L., 2010. “Novel Bistable Hammer Valve For Digital Hydraulics”. Int. J. Fluid Power,11(3), pp. 35–44.
Noergaard, C., Madsen, E. L., Joergensen, J. M. T., Christensen, J. H., and Bech, M. M., 2018. “Test of a Novel Moving Magnet Actuated Seat Valve for Digital Displacement Machines”. IEEE/ASME Trans. Mechatronics,23(5), pp. 2229–2239.
Noergaard, C., Bech, M. M., Christensen, J. H., and Andersen, T. O., 2018. “Modeling and Validation of Moving Coil Actuated Valve for Digital Displacement Machines”. IEEE Trans. Ind. Electron.,65(11), pp. 8749–8757.
Noergaard, C., 2017. “Design, Optimization and Testing of Valves for Digital Displacement Machines”. Ph.d. dissertation, Aalborg University.
Bender, N. C., Pedersen, H. C., and Nørgård, C., 2017. “Experimental Validation of Flow Force Models for Fast Switching Valves”. In Proc. ASME/BATH 2017 Symp. Fluid Power Motion Control, ASME.
Bender, N. C., Plöckinger, A., Foschum, P., Winkler, B., and Pedersen, H. C., 2019. “Measurements of a Novel Digital Hydraulic Valve Comprising a Cushioning Feature”. J. Dyn. Syst. Meas. Control,under revi.
Madsen, E. L., Joergensen, J. M. T., Noergaard, C., and Bech, M. M., 2017. “Design Optimization of Moving Magnet Actuated Valves for Digital Displacement Machines”. In ASME/BATH 2017 Symp. Fluid Power Motion Control, pp. 1–12.
Verein Deutscher Ingenieure (VDI), 2004. VDI 2206: Design methodology for mechatronic systems. VDI.
Kamadan, A., Kiziltas, G., and Patoglu, V., 2017. “Co-design strategies for optimal variable stiffness actuation”. IEEE/ASME Trans. Mechatronics,22(6), pp. 2768–2779.
Pedersen, H. C., Andersen, T. O., Hansen, M. R., and Bech, M. M., 2010. “Presenting a Multi-Level Superstructure Optimization Approach for Mechatronic System Design”. In Proc. ASME 2010 10th Bienn. Conf. Eng. Syst. Des. Anal., pp. 891–898.
da Silva, M. M., Brüls, O., Desmet, W., and Van Brussel, H., 2009. “Integrated structure and control design for mechatronic systems with configuration-dependent dynamics”. Mechatronics,19(6), pp. 1016–1025.
Malmquist, D., Frede, D., and Wikander, J., 2014. “Holistic design methodology for mechatronic systems”. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.,228(10), pp. 741–757.
Bendsoe, Martin Philip, Sigmund, O., 2004. Topology Optimization Theory, Methods, and Applications, 2 ed. Springer-Verlag Berlin Heidelberg.
Chen, Y., Zhou, S., and Li, Q., 2010. “Multiobjective topology optimization for finite periodic structures”. Comput. Struct.,88(11-12), pp. 806–811.
Li, C., Kim, I. Y., and Jeswiet, J., 2015. “Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization”. Struct. Multidiscip. Optim.,51(2), pp. 547–564.
Deaton, J. D., and Grandhi, R. V., 2014. “A survey of structural and multidisciplinary continuum topology optimization: Post 2000”. Struct. Multidiscip. Optim.,49(1), pp. 1–38.
Yang, Y. P., Liu, J. J., Ye, D. H., Chen, Y. R., and Lu, P. H., 2013. “Multiobjective optimal design and soft landing control of an electromagnetic valve actuator for a camless engine”. IEEE/ASME Trans. Mechatronics,18(3), pp. 963–972.
Noergaard, C., Christensen, J. H., Bech, M. M., Hansen, A. H., and Andersen, T. O., 2017. “Test Rig for Valves of Digital Displacement Machines”. In Ninth Work. Digit. Fluid Power, pp. 1–13.
Bender, N. C., Andersen, T. O., and Pedersen, H. C., 2019. “Feasibility of Deep Neural Network Surrogate Models in Fluid Dynamics”. Model. Identif. Control A Nor. Res. Bull.,40(2), pp. 71–87.
Borutzky, W., Barnard, B., and Thoma, J., 2002. “An orifice flow model for laminar and turbulent conditions”. Simul. Model. Pract. Theory,10(3-4), pp. 141–152.
Funk, J. E., Wood, D. J., and Chao, S. P., 1972. “The Transient Response of Orifices and Very Short Lines”. J. Basic Eng.,94(2), pp. 483–489.
Bender, N. C., Pedersen, H. C., Winkler, B., and Plöckinger, A., 2018. “Numerical Investigation of Switching Features of a Hydraulic Seat Valve with Annular Flow Geometry”. Int. J. Fluid Power,19(3), pp. 152–164.
Bender, N. C., Pedersen, H. C., Plöckinger, A., and Winkler, B., 2018. “Evaluating the Influence of Leaking Active Check Valves in Digital Displacement Units”. In IEEE Glob. Fluid Power Soc. PhD Symp., IEEE, pp. 1–9.
Best, D. J., and Roberts, D. E., 1975. “The Upper Tail Probabilities of Spearman’s Rho”. R. Stat. Soc. Ser. C (Applied Stat.,24(3), pp. 377–379.
Pedersen, H. C., Andersen, T. O., and Bender, N. C., 2021. “Investigating the Influence of Design Parameters on the Fluid-Structure Interaction in Fast Switching Valves”. Proc. ASME/BATH 2021 Symposium on Fluid Power & Motion Control FPMC 2021, ASME, 2021.