A hydraulic hybrid excavator based on multi-chamber cylinders and secondary control – design and experimental validation
DOI:
https://doi.org/10.1080/14399776.2018.1447065Keywords:
multi-chamber cylinder, digital hydraulics, Secondary controlAbstract
In this paper, a special type of multi-chamber cylinders along with secondary controlled hydraulic motors are key components in the design of a highly efficient hydraulic series hybrid system. The system is developed for and tested on a large excavator (30-ton class). The evaluated system supports potential and kinetic energy recovery and storage using hydraulic accumulators. Through proper sizing of components and sophisticated valve control, an energy-efficient flexible and robust hybrid system is achieved. The study describes how the demonstrator is tested in real truck loading cycles. A detailed energy analysis is also presented to explain the energy flow inside the hybrid system.
Downloads
References
Achten, P.A.J., 2008. A serial hydraulic hybrid drive train for
off-road vehicles. Proceedings of the National Conference
on Fluid Power, 19 (2), 515–521.
Achten, P.A.J. and Palmberg, J.-O., 1999. What a difference a
hole makes – the commercial value of the INNAS hydraulic
transformer. In: The 6th Scandinavian international
conference on fluid power, SICFP’99, 26–28 May. Tampere,
Finland.
Andersson, S., Söderberg, A., and Björklund, S., 2007.
Friction models for sliding dry, boundary and mixed
lubricated contacts So. Tribology International, 40, 580–
doi:10.1016/j.triboint.2005.11.014.
Belan, H.C., et al., 2015. Digital secondary control architecture
for aircraft application. In: The seventh workshop on digital
fluid power. Austria: Linz, 21–39.
Bishop, E.D., 2007. Digital hydraulic system.
US20070120662A1. US.
Bishop, E.D., 2009. Digital hydraulic transformer –
approaching theoretical perfection in hydraulic drive
efficiency. In: The 11th Scandinavian international
conference on fluid power, SICFP’09. Linköping, USA.
Busquets, E. and Ivantysynova, M., 2015. Adaptive robust
motion control of an excavator hydraulic hybrid swing
drive. SAE International Journal of Commercial Vehicles, 8
(2), 2015-01–2853. doi:10.4271/2015-01-2853.
Dell’ Amico, A. et al., 2013. Investigation of a digital
hydraulic actuation system on an excavator arm. In: The
th Scandinavian international conference on fluid power,
SICFP2013. Linköping, Sweden, 505–511. doi:10.3384/
ecp1392a50.
Filla, R., 2015. Evaluating the efficiency of wheel loader bucket
designs and bucket filling strategies with non-coupled
DEM simulations and simple performance indicators.
Schriftenreihe der Forschungsvereinigung Bau- und
Baustoffmaschinen e.V. FVB, 49, 273–292. doi:10.13140/
RG.2.1.1507.1201.
Frank, B., Skogh, L., and Alaküla, M., 2012. On wheel loader
fuel efficiency difference due to operator behaviour
distribution. In: 2nd commercial vehicle technology
symposium (CVT 2012). Available from: http://www.iea.
lth.se/publications/Papers/Frank_2012.pdf.
Hansen, A.H., 2014. Investigation and optimisation of a
discrete fluid power PTO-system for wave energy converters.
Aalborg, Denmark: Aalborg University, Institute of Energy
Technology.
Hansen, R.H., Andersen, T.O., and Perdersen, H.C., 2011.
‘Analysis of discrete pressure level systems for wave energy
converters. In: Proceedings of 2011 international conference
on fluid power and mechatronics. 552–558. doi:10.1109/
FPM.2011.6045825.
Heemskerk, E., Bonefeld, R., and Buschmann, H., 2015.
Control of a semi-binary hydraulic four-chamber cylinder.
In: Proceeding of the 14th Scandinavian international
conference on fluid power. Tampere, Finland.
Heybroek, K. and Norlin, E., 2015. Hydraulic multi-chamber
cylinders in construction machinery. In: Hydraulikdagarna.
Linköping, Sweden.
Heybroek, K., Vael, G.E.M., and Palmberg, J.-O., 2012.
Towards resistance-free hydraulics in construction
machinery. In: 8th international fluid power conference.
Dresden, Germany.
Huova, M., Laamanen, A., and Linjama, M., 2010. Energy
efficiency of three-chamber cylinder with digital valve
system. International Journal of Fluid Power, 11 (3), 15–22.
doi:10.1080/14399776.2010.10781011.
Inderelst, M. et al., 2011. Energy efficient system layout for
work hydraulics of excavators. In: The 12th Scandinavian
international conference on fluid power, SICFP’11. Tampere,
Finland.
Linjama, M., et al., 2009. Secondary controlled multichamber
hydraulic cylinder. In: Proceedings of the 11th
Scandinavian international conference on fluid power,
SICFP’09. Sweden.
Palmgren, G. and Palmberg, J.-O., 1988. Secondary
controlled hydraulic systems – A new drive concept with
future prospects. In: International fluid power exposition,
IFPE’88. Chicago, IL.
Pettersson, K. and Tikkanen, S., 2009. Secondary control
in construction machinery – design and evaluation of
an excavator swing drive. In: The 11th Scandinavian
international conference on fluid power, SICFP’09. Linköping.
Sahlman, M., 2012. Valve controlled multi-chamber cylinder.
Tampere: Tampere University of Technology.
Shih, M.-C., 1984. Untersuchung einer zylinderansteuerung
durch hydro-transformator am Konstant Drucknetz.
Aachen University.
Wiktor, R. and Heybroek, K., 2014. Pressurized medium
assembly. US20150298730A1. Sweden.