Modelling of the influence of entrained and dissolved air on the performance of an oil-hydraulic capacity
DOI:
https://doi.org/10.1080/14399776.2015.1110094Keywords:
entrained air, dissolved air, air mass transfer, lumped parameter simulation, bulk modulusAbstract
Fluids used in fluid power systems to transmit power and energy seldom consist of pure oil due to a large number of impurity sources. Especially impurities in form of air bubbles highly change the system behaviour with respect to stiffness and efficiency. The aim of this paper is to provide a mathematical model to simulate the effect of air on the pressure build-up and release in an oil-hydraulic capacity. Therefore, first a model to calculate the mass transfer between dissolved and entrained air is presented. In the end, the new developed model is validated with measurements.
Downloads
References
Esqué, S. and Ellman, A. 2005. An efficient numerical method
for solving the dynamic equations of complex fluid power
systems. In: Proceedings of the 2005 power transmission
and motion control workshop. Hoboken, NJ: Wiley,
–191, ISBN: 978-0-470-01677-0.
Gholizadeh, H., 2013. Modeling and experimental evaluation
of the effective bulk modulus for a mixture of hydraulic oil
and air. Thesis (PhD). University of Saskatchewan, Saskatoon,
Canada.
Gholizadeh, H., Burton, R. and Schoenau, G. 2012. Fluid bulk
modulus: comparison of low pressure models. International
journal of fluid power, 13 (1), 7–16. doi:10.1080/
2012.10781042
von Grabe, C., Reinertz, O., von Dombrowski, R. and Murrenhoff,
H. 2014. System simulation in DSHplus. Encyclopedia of
automotive engineering. Hoboken, NJ, Wiley, ISBN: 978-
-470-97402-5.
Ivantysyn, J. and Ivantysynova, M., 2001. Hydrostatic pumps
and motors, principles, designs, performance, modelling,
analysis, control and testing. New Delhi: Academia Books
International. ISBN: 81-85522-16-2.
Kim, S., 2012. Measurements of effective bulk modulus and its
used in CFD simulation. Thesis (PhD). RWTH Aachen,
Aachen, Shaker, ISBN: 978-3-8440-0895-1.
Manhartsgruber, B., 2013. Experimental results on air release
and absorption in hydraulic oil. In: Proceedings of the
ASME 2013 fluids engineering division summer meeting
Paper No. FEDSM2013-16602. Incline Village, Nevada:
ASME.
Murrenhoff, H., 2014. Fundamentals of fluid power. Aachen:
Shaker, ISBN 978-3-8440-2826-3.
LMS, N.N., 2009. HYD advanced fluid properties technical
bulletin no. 117. Rev 9 November 2009. LMS Engineering
Innovations, LMS Imagine. S.A.
Riedel, C., Murrenhoff, H. and Stammen, C. 2010. Physically
correct hydraulic system simulation with mass conservative
approach. In: Proceedings of the 7th international fluid
power conference. Aachen: Apprimus, ISBN: 978-3-00-
-9.
Ruan, J. and Burton, R., 2006. Bulk modulus of air content in a
hydraulic cylinder. In: Proceedings of the 2006 ASME international
mechanical engineering congress and exposition –
IMECE. Paper No. IMECE2006-15854. Chicago, IL: ASME.
Schrank, K., 2015. Eindimensionale Hydrauliksimulation
mehrphasiger Fluide [One dimensional fluid power simulation
for multi-phase fluids]. Thesis (PhD). Shaker, RWTH Aachen,
Aachen, ISBN: 978-3-8440-3656-5.
Schrank, K., Murrenhoff, H. and Stammen, C., 2013.
Measurements of air absorption and air release characteristics
in hydraulic oils at low pressure. In: Proceedings
of the ASME/Bath 2013 symposium on fluid power &
motion control. Paper No. FPMC2013-4450. Sarasota,
FL: ASME.
Vacca, A., Klop, R. and Ivantysynova, M., 2010. A numerical
approach for the evaluation of the effects of air release and
vapour cavitation on effective flow rate of axial piston
machines. International journal of fluid power, 11 (1),
–45. doi:10.1080/14399776.2010.10780996.
Zhou, J., Vacca, A. and Manhartsgruber, B., 2013. A novel
approach for the prediction of dynamic features of air release
and absorption in hydraulic oils. Journal of fluids
engineering (ASME), 135, 091305-1–091305-8. doi:10.1115/
4024864.