PID TUNING RULE FOR PRESSURE CONTROL APPLICATIONS
Keywords:
pressure control, ITAE, PID, optimization, tuning rule, frequency response, hydraulicAbstract
In pressure control applications, servo-valves or variable displacement pumps are used to meter the flow into a supply line or a chamber with relatively constant capacity, thereby controlling its pressure under the influence of disturbances such as flows in and out of the controlled volume. For most applications proportional integral derivative (PID) controllers are suited and widely used in research and practice. However, tuning of PID parameters for pressure control is usually done by trial and error method due to the lack of applicable tuning rules for this case. The paper examines the dynamics of valve controlled pressure applications and proposes a set of effective but simple PID feedback gain formulas. They can be implemented by practitioners on the basis of data that in most cases is available from plant drawings and the valve data sheet. The tuning rule's parameters are based on a straight forward frequency response design. They yield swift and robust performance in simulation and experiment.
Downloads
References
Alirand, M., Favennec, G. and Lebrun, M. 2002.
Pressure components stability analysis: a revisited
approach. International Journal of Fluid Power,
Vol. 3, No. 1, pp. 33 - 46.
Alleyne, A. and Liu, R. 2000. A simplified approach to
force control for electro-hydraulic systems. Control
Engineering Practice, 8, pp. 1347 - 1356.
Backé, W. 1981. Schwingungserscheinungen bei
Druckregelungen [Oscillation phenomena in pressure
control applications]. O + P : Zeitschrift für
Fluidtechnik, Vol. 25, No. 12, pp. 911 - 914.
Bakirdogen, U. and Liermann, M. 2010. Simulation
study on pressure control using nonlinear Input/
output linearization method and classical PID
approach. FPMC 2010 Bath/ASME Symposium on
Fluid Power and Motion Control, September 15-17
, Bath, UK, Hadleys Ltd, pp. 323 - 338.
Boes, C., Lenz, W. and Müller, J. 2003. Digital Servo
Valves with Fieldbus Interface in Closed Loop Applications.
In 8th Scandinavian International Conference
on Fluid Power 2003. Tampere, pp. 845 -
Dorf, R. C. and Bishop, R. H. 2008. Modern control
systems, Prentice Hall.
Dreymüller, J. 1975. Hydraulisch-mechanische
Druckregelung an verstellbaren Axialkolbenpumpen
[Hydro-mechanical pressure control with variable
displacement piston pumps]. RWTH Aachen
University.
Forster, I. 1984. Elektro-Hydraulische Lastsimulation
[Electro-hydraulic load simulation]. O + P : Zeitschrift
für Fluidtechnik, Vol. 28, No. 8, pp. 498 -
Forster, I. 1988. Elektrohydraulische Lastsimulation
[Electro-hydraulic load simulator]. RWTH Aachen
University.
Graham, D. and Lathrop, R. 1953. The synthesis of
optimum response: criteria and standard forms,
Wright Air Development Center.
Guo, L. and Hovestäd, E. 1989. Parameterangepasster
Regler für einen Druckregelkreis. O + P : Zeitschrift
für Fluidtechnik, Vol. 33, No. 12, pp. 958 -
Ivantysin, J. and Ivantysynova, M. 2001. Hydrostatic
pumps and motors, Akademia Books International.
Kennedy, J. and Fales, R. 2010. Experimental modelling
and control of a servo-hydraulic force control
system. International Journal of Fluid Power, Vol.
, No. 1, pp. 7 - 19.
Langen, A. 1987. Dynamisches Verhalten von druckgeregelten
Verstellpumpen. O + P : Zeitschrift für
Fluidtechnik, Vol. 31, No. 7, pp. 574 - 580.
Langen, A. 1986. Experimentelle und analytische
Untersuchungen an vorgesteuerten hydraulischmechanischen
und elektro-hydraulischen Pumpenregelungen
[Experimental and analytical studies on
pump control using hydro-mechanical and electrohydraulic
feedback]. RWTH Aachen University.
Liu, Y. 1985. Einsatz eines zweistufigen Proportionalventils
für druckgeregelte Verstelllpumpen [Double
stage propoprtional control valve for pressure controlled
variable displacement pumps]. O + P : Zeitschrift
für Fluidtechnik, Vol. 29, No. 11, 792 - 796.
Noskievič, P. 1996. Auswahlkriterium der Reglerstruktur
eines lagegeregelten elektrohydraulischen Antriebes
[Criterion for selection of control law for
hydraulic position servo drives]. O + P : Zeitschrift
für Fluidtechnik, Vol. 39, No. 1, pp. 49 - 51.
Noskievič, P. 2002. Closed loop control of the system
with the modes of different dynamics and damping.
International Carpathian Control Conference
ICCC' 2002, pp. 235 - 240
Murrenhoff, H. 2008. Servohydraulik - geregelte
hydraulische Antriebe [Servo-hydraulics - closed
loop controlled hydraulic drives], Aachen: Shaker.
Park, S. and Kim, J. L. J. 2009. Robust control of the
pressure in a control-cylinder with direct drive
valve for the variable displacement axial piston
pump. Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control
Engineering, Vol. 223, No. 4, pp. 455 - 465.
Plummer, A. R. 2007. Robust electrohydraulic force
control. ImechE, Vol. 221, pp.717 - 731.
Ulrich, H. 1993. Elekro-hydraulische Druckregelung
mit Verstellpumpe für unterschiedliche Verbraucher
und Leitungsnetze [Electro-hydraulic pressure control
with variable displacement pump for different
actuators and pipe networks]. RWTH Aachen University.
Ulrich, H. 1989. Kompensation der Leitungsdynamik
bei Druckregelungen mit Verstellpumpen [Line
effect compensation with pressure control using variable
displacement pumps]. O + P : Zeitschrift für
Fluidtechnik, Vol. 33, No. 12, pp. 930 - 936.
Watton, J. 2009. Fundamentals of fluid power control,
Cambridge University Press.
Yang, K., Oh, I. and Lee, I. 1999. Pressure control of
hydraulic servo system using proportional control
valve. Journal of Mechanical Science and Technology,
Vol. 13, No. 3, pp. 229 - 239.
Zehner, F. 1987. Vorgesteuerte Druckventile mit
direkter hydraulisch - mechanischer und elektrischer
Druckmessung [Pilot operated pressure
valves with direct hydro-mechanic and electric
pressure sensing]. RWTH Aachen University.