Physically motivated lumped-parameter model for proportional magnets
DOI:
https://doi.org/10.1080/14399776.2018.1486631Keywords:
Proportional magnet, dynamic modelling, parameter study, magnetic, flux linkageAbstract
The paper presents a novel physically motivated lumped-parameter model for one-dimensional simulation of proportional magnets. The model is deduced by analysing the significant physical interactions, properties of state-of-the art actuators and limitations of contemporary lumped-parameter models. The resulting model equations are taking into account the main properties of commonly used proportional magnets in the relevant field of operation, as e.g. nonlinear force and flux linkage characteristics over stroke and current, and are respecting the dominant physical effects, leading to these nonlinearities and linking the two before mentioned characteristics. This enables not only the parameterisation by a small number of independent parameters, but also physically correct parameter studies. After the model’s ability to describe the static behaviour of proportional magnets is proven by using measurement data of two off-the-shelf actuators, the paper concludes with a dynamic model validation, highlighting the good accuracy of the modelled frequency response.
Downloads
References
Backé, W. and Klein, A., 2004. Fluid power actuators. In:
H. Janocha, eds. Actuators – basics and applications. 1st
ed. Berlin: Springer, 155–230.
Burget, W. and Weber, J., 2012. Mobile systems – markets,
industrial needs and technological trends. In: Proceedings
of the 8th international conference on fluid power (8tn
IFK), Dresden, 2, pp. 23–54.
Chua, L.O. and Stromsmoe, K.A., 1970. Lumped-circuit
models for nonlinear inductors exhibiting hysteresis
loops. IEEE transactions on circuit theory, 17 (4), 564–
doi:10.1109/TCT.1970.1083192
Cristofori, D. and Vacca, A., 2012. The modeling of electrohydraulic
proportional valves. Journal of dynamic
systems, measurement, and control, 134, 120–125.
Dell’Amico, A. and Krus, P., 2016. Modelling and experimental
validation of a nonlinear proportional solenoid pressure
control valve. International journal of fluid power, 17 (2),
–101. doi:10.1080/14399776.2016.1141636
Huayong, Y., et al. 2009. Electro-hydraulic proportional control
of thrust system for shield tunneling machine.
Automation in construction, 18 (7), 950–956. doi:10.1016/
j.autcon.2009.04.005
Kallenbach, E. et al., 2012. Elektromagnete - grundlagen,
berechnung, entwurf und anwendung. 4th ed. Wiesbaden:
Vieweg+Teubner.
Krimpmann, C., et al., 2016. Simulationsgestützte optimierung
von gleitzustandsreglern für hydraulische wegeventile
(simulation-based optimization of a sliding mode
controller for directional valves). at – automatisierungstechnik,
(6), 443–456. doi:10.1515/auto-2016-0017
Meng, F., et al., 2016. System modeling, coupling analysis, and
experimental validation of a proportional pressure valve
with pulsewidth modulation control. IEEE/ASME transactions
on mechatronics, 21 (3), 1742–1753. doi:10.1109/
TMECH.2015.2499270
Roters, H.C., 1941. Electromagnetic devices. 1st. New York:
John Wiley & Sons.
Ruderman, M. and Gadyuchko, A., 2013. Phenomenological
modeling and measurement of proportional solenoid with
stroke-dependent magnetic hysteresis characteristic.
Proceedings of the IEEE International Conference on
Mechatronics (ICM), Vicenza, pp. 180–185 doi:10.1007/
s00508-013-0342-2
Schultz, A. and Tappe, P., 2006. The method of finite elements
in the design process of valve solenoids.
Proceedings of the 5th International Conference on
Fluid Power (5th IFK), Aachen, pp. 315–327.
Vaughan, N.D. and Gamble, J.B., 1996. The modeling and
simulation of a proportional solenoid valve. Journal of
dynamic systems, measurement, and control, 118, 120–
Zavarehi, M.K. and Lawrence, P.D., 1999. Nonlinear modeling
and validation of solenoid-controlled pilot-operated
servovalves. IEEE/ASME transactions on
mechatronics, 4 (3), 324–334. doi:10.1109/3516.789690