SIMULATION OF THE LUBRICATING FILM BETWEEN CONTOURED PISTON AND CYLINDER
Keywords:
lubricating film, Reynolds-equation, axial piston machinesAbstract
Axial piston pumps are used in several industrial applications. The geometry of the probably most important interface of these pumps, the piston-cylinder-contact, is mostly optimized by comparing test bench results. Only a few simulation tools have ever been used to optimize the geometry such as gap width, cylinder length, etc. For the DFG-supported project “Axial piston machines with PVD-coated components” both, piston and cylinder, are to be coated or should consist of hardened material, so that running-in is no longer possible. The contour of piston and cylinder therefore needs to be machined before the parts are used in the axial piston pump. Simulations of different contours as well as gap widths and cylinder lengths are therefore necessary to avoid a large number of test-bench measurements. In this publication a simulation tool is presented, which allows to vary the geometry and contouring of the moving parts. It is shown that the contouring and geometry can be optimized for specific working points.
Downloads
References
Van Bebber, D. 2003. PVD-Schichten in Verdrängereinheiten
zur Verschleiß- und Reibungsminimierung
bei Betrieb mit synthetischen Estern. Thesis,
RWTH Aachen University.
Breuer, D. 2006. Reibung am Arbeitskolben von
Schrägscheibenmaschinen im Langsamlauf. Thesis,
RWTH Aachen University.
Deeken, M. and Murrenhoff, H. 2002. Advanced
simulation of fluid of fluid power components using
DSHplus and ADAMS. Proceedings Bath workshop
on power transmission and motion control,
PTMC 2002, Bath.
Ivantysyn, J. and Ivantysynova, M. 1993. Hydraulische
Pumpen und Motoren – Konstruktion und Berechnung.
Würzburg.
Kleist, A. 2002. Berechnung von Dicht- und Lagerfugen
in hydrostatischen Maschinen. Thesis, RWTH
Aachen University.
Lasaar, R. 2003. Eine Untersuchung zur mikro- und
makrogeometrischen Gestaltung der Kolben-
/Zylinderbaugruppe von Schrägscheibenmaschinen.
VDI Fortschritt-Berichte. Reihe 1 No. 364. Düsseldorf:
VDI. ISBN: 3-18-336401-8.
Liu, M. 2001. Dynamisches Verhalten hydrostatischer
Axialkolbengetriebe. Diss., Bochum.
Manring, N. 1999. Friction forces within the cylinder
bores of swash-plate type axial piston pumps and
motors. Journal of dynamic systems, measurement
and control, Vol. 121.
Murrenhoff, H., Piepenstock, U. and Kohmäscher,
T. 2008. Analyzing losses in hydrostatic drives.
JFPS 2008, Toyama, Japan.Murrenhoff, H. and Gels, S. 2009. Improving efficiency
of hydrostatic drives. ICFP 2009, Hangzhou,
China.
Olems, L. 2001. Ein Beitrag zur Bestimmung des Temperaturverhaltens
der Kolben-Zylinder-Baugruppe
von Axialkolbenmaschinen in Schrägscheibenbauweise.
VDI Fortschritt-Berichte. Reihe 1 No.
Düsseldorf: VDI. ISBN: 3-18-334801-2.
Patir, N. and Cheng, H. S. 1987. Anaverage flow
model for determining effects of three dimensional
roughness on partial hydrodynamic lubrication.
Renius, K. T. 1974. Untersuchungen zur Reibung
zwischen Kolben- und Zylinder bei Schrägscheiben-
Axialkolbenmaschinen. VDI-Forschungsheft
, Düsseldorf, VDI-Verlag.
Sanchen, G. 2003. Auslegung von Axialkolbenmaschinen
in Schrägscheibenbauweise mit Hilfe der numerischen
Simulation. Thesis, RWTH Aachen University.
Scharf, S. and Murrenhoff, H. 2005. Measurement of
friction forces between piston and bushing of an axial
piston displacement unit. International Journal
of fluid power.
Weichert, D. 1999. Festigkeitslehre, Institut für allgemeine
Mechanik. RWTH Aachen, 4. Auflage.
Wieczorek, U. 2002. Ein Simulationsmodell zur Beschreibung
der Spaltströmung in Axialkolbenmaschinen
der Schrägscheibenbauart. VDI Fortschritt-
Berichte. Reihe 7 No. 443. Düsseldorf: VDI. ISBN:
-18-33307-4.