A new meshless method using Taylor series to solve elasticity problems
DOI:
https://doi.org/10.13052/17797179.2012.721500Keywords:
PDE, meshless method, convergence analysis, Taylor series expansion, Domb– Sykes plotAbstract
A meshless method is presented and analysed. In this approach, one discretises only the boundary, the partial differential equation being solved in the domain by using Taylor series expansion. A least square method is used to apply boundary conditions. In this paper, the method is applied to Navier equations for linear elasticity. Various tests are presented to discuss the efficiency and robustness of the method. The convergence is exponential with respect to the degree but it depends on the radius of convergence of the series. That is why an algorithm has been associated with the Domb–Sykes plot that is a classical method to detect singularities and evaluate the radius of convergence.
Downloads
References
Babuska, I., Szabo, B.A., & Katz, I.N. (1981). The p-version of the finite element method. SIAM Journal
on Numerical Analysis, 18, 515–545.
Baker, G.A., & Graves-Morris, P. (1996). Padé approximants. Cambridge: Cambridge University Press.
Campion, S.D., & Jarvis, J.L. (1996). An investigation of the implementation of the p-version finite element
method. Finite Elements in Analysis and Design, 23(1), 1–21.
Domb, C., & Sykes, M.F. (1961). Use of series expansions for the Ising model susceptibility and
excluded volume problem. Journal of Mathematical Physics, 2(1), 63–67.
Garajeu, D., Cochelin, B., & Medale, M. (2010). Analyse et amélioration des séries (Analysis and
improvement of series), Technical report, Laboratoire de Mécanique et d’ Acoustique.
Hunter, C., & Guerrieri, B. (1980). Deducing the properties of singularities of functions from their Taylor
series coefficients. SIAM Journal on Applied Mathematics, 39(2), 248–263.
Muskhelishvili, M. (1958). Some basic problems of the mathematical theory of elasticity (pp. 113–115).
Groningenp: Noordhoff.
Tampango, Y. (2009). Résolution des problèmes incompressibles de Stockes par la méthode de perturbation
(Solving incompressible Stokes problems by a perturbation method) (Master’s thesis, Université
de Metz).
Tampango, Y., Potier-Ferry, M., Koutsawa, Y., & Belouettar, S. (2012). Convergence analysis and detection
of singularities within a boundary meshless method based on Taylor series. Engineering Analysis with
Boundary Elements, 36(10), 1465–1472.
Taro, M. (2012). Elaboration d’ un algorithme numérique permettant de résoudre un problème d’ élasticité
non linéaire à l’ aide d’ une méthode developpée au LEM3 (A numerical algorithm to solve a nonlinear
elasticity problem by a method developed in LEM3)(Master’s thesis, Université de Lorraine).
Van Dyke, M. (1974). Analysis and improvement of perturbation series. Quarterly Journal of Mechanics
and Applied Mathematics, 27, 423–450.
Zézé, D. (2009). Calcul de fonctions de forme de haut degré par une technique de perturbation (Computating
high degree shape functions by a perturbation technique) (PhD thesis, Université Paul Verlaine
Metz).
Zézé, D.S., Potier-Ferry, M., & Damil, N. (2010). A boundary meshless method with shape functions
computed from the PDE. Engineering Analysis with Boundary Elements, 34(8), 747–754.
Zhang, X., Liu, X.H., Song, K.Z., & Lu, M.W. (2001). Least-squares collocation meshless method.
International Journal for Numerical Methods in Engineering, 51(9), 1089–1100.