A generalized continuum approach to predict local buckling patterns of thin structures

Authors

  • Noureddine Damil Laboratoire de Calcul Scientifique en Mécanique Faculté des Sciences Ben M’Sik Université Hassan II – Mohammedia, BP 7955, Sidi Othman Casablanca, Maroc
  • Michel Potier-Ferry Laboratoire de Physique et Mécanique des Matériaux UMR CNRS 7554 Université Paul Verlaine Metz, Ile du Saulcy F-57045, Metz, France

Keywords:

Ginzburg-Landau equation, multi-scale analysis, local instability, local-global coupling, buckling, wrinkling

Abstract

Macroscopic descriptions of instability pattern formation can be predicted by generic amplitude equations of Ginzburg-Landau type. A variant of this approach is presented, that permits to account for the coupling between local and global instabilities. The mean field and the amplitude of the fluctuations are governed by similar equations. The resulting model is a generalized continuum, where the macroscopic stresses are Fourier coefficients of the microscopic stresses. This new double scale description of cellular instabilities is applied to beam on an elastic foundation and to 3D nonlinear elasticity. We shall also discuss the behaviour of these new continuum models after a finite element discretisation.

Downloads

Download data is not yet available.

References

Cochelin B., Damil N., Potier-Ferry M., Méthode Asymptotique Numérique, Hermès Science

Publishing, Paris, Londres, 2007.

Damil N., Potier-Ferry M., “Wavelength selection in the postbuckling of a long rectangular

plate”, International Journal of Solids and Structures, vol. 22, 1986, p. 511-526.

Damil N., Potier-Ferry M. “Amplitude equations for cellular instabilities”, Dynamics and

Stability of Systems, vol. 7, 1992, p. 1-34.

Damil N., Potier-Ferry M., “A generalized continuum approach to describe instability pattern

formation by a multiple scale analysis”, Comptes Rendus Mécanique, vol. 334, 2006,

p. 674-678.

Diaby A., Le Van A., Wielgosz C., « Modélisation du plissage dans les structures

membranaires », Revue Européenne de Mécanique Numérique, vol. 13, n° 1-2-3 (Giens

, 2006, p. 143-154.

Iooss G., Mielke A., Demay Y. “Theory of steady Ginzburg-Landau equation in

hydrodynamic stability problems”, European Journal of Mechanics B/Fluids, vol. 8, 1989,

p. 229-268.

Léotoing L., Drapier S., Vautrin A., “Nonlinear interaction of geometrical and material

properties in sandwich beam instabilities”, International Journal of Solids and Structures,

vol. 39, 2002, p. 3717-3739.

Newell, A., Whitehead J., “Finite band width, finite amplitude convection”, Journal of Fluid

Mechanics, vol. 38, 1969, p. 279-303.

Segel L., “Distant side walls cause slow amplitude modulation of cellular convection”,

Journal of Fluid Mechanics, vol. 38, 1969, p. 203-224.

Sridharan S., Zeggane M., “Stiffened plates and cylindrical shells under interactive buckling”,

Finite Elements in Analysis and Design, vol. 38, 2001, p. 155-178.

Wesfreid J.E., Zaleski S. (Ed.), Cellular Structures in instabilities, Lecture Notes in Physics

, Springer-Verlag, Heidelberg, 1984.

Wong Y.W., Pellegrino S., “Wrinkled membranes-Part1: experiments”, Journal of Mechanics

of Materials and Structures, vol. 1, 2006, p. 3-25.

Downloads

Published

2008-08-16

How to Cite

Damil, N. ., & Potier-Ferry, M. . (2008). A generalized continuum approach to predict local buckling patterns of thin structures. European Journal of Computational Mechanics, 17(5-7), 945–956. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/1871

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 > >>