The asymptotic-numerical method : an efficient perturbation technique for nonlinear structural mechanics

Authors

  • Bruno Cochelin Laboratoire de physique et mecanique des materiaux URA CNRS 1215,/SGMP Universite de Metz,l/e du Saulcy 57045 Metz cedex 01
  • Noureddine Damil Laboratoire de calcul scientifique en mecanique Universite Hassan// Mohammedia,faculte des sciences Ben M'Sik, Casablanca, Maroc
  • Michel Potier-Ferry Laboratoire de physique et mecanique des materiaux URA CNRS 1215,/SGMP Universite de Metz,l/e du Saulcy 57045 Metz cedex 01

Keywords:

nonlinear computation, perturbation techniques, finite elements, geometric nonlinearity

Abstract

Perturbation techniques (asymptotic expansions) have been widely used in many engineering fields for solving nonlinear problems. However, the solution is often represented by the first few terms of a perturbation expansion, which leads to a qualitative approximation rather than a quantitative one. Our aim is to show that a perturbation technique can also lead to a powerfull numerical method for some classes of structural problems, provided that it is combined with a finite element method to account for complex geometries, and that a large number of terms of expansions are determined.

 

Downloads

Download data is not yet available.

References

Almroth B.O., Stehlin P., Brogan F.A., 1981,"Use of global functions for the

improvement in efficiency of nonlinear analysis". Paper 81-0575, AIAA 22nd

conference on Structures, Structural Dynamics and Materials, Part I, pp 286-290.

Azrar L. , 1993 , "Etude du comportement post-critique des coques cylindriques par une

methode asymptotique-numerique", These de l'Universite de Metz, Fevrier 1993.

Azrar L., Cochelin B., Damil N., Potier-Ferry M., 1993, "An asymptotic-numerical

method to compute the post-buckling behaviour of elastic plates and shells"

International Journal for Numerical Method in Engineering, vol 36, pp 1251-

Azrar L., Cochelin B., Damil N., Potier-Ferry M. ,1992, "An asymptotic-numerical

method to compute bifurcating branches" . In New Advances in Computational

Structural Mechanics, P. Ladeveze and O.C. Zienkiewicz Eds, Elsevier, pp 117-

.

Baker G.A., Graves-Morris P., 1981, Pade Approximants, Part I : Basic Theory.

Encyclopedia of Mathematics and its Applications, Volume 13, Addison-Wesley

Publishing Company.

Boutyour E.H.,Cochelin B., Potier-Ferry M. ,1993, "Calculs de points de bifurcation par

une methode asymptotique-numerique", Proc.1 o Congres National de Mecanique,

Maroc, pp 371-378,13-16 Avril 1993, Rabat.

Cochelin B., 1994, "A path following technique via an Asymptotic-Numerical Method",

To appear in Computers & Structures.

Cochelin B., Damil N., Potier-Ferry M. ,1994," Asymptotic-Numerical Methods and Pade

approximants for nonlinear elastic structures". To appear in International

Journal for Numerical Method in Engineering.

Cochelin B., Damil N., Potier-Ferry M. ,1993 ,"Une technique de base reduite pour le

calcul nonlineaire des structures elastiques", 11° Congres Fram;:ais de Mecanique

AUM, Lille, Vol 4, pp 5-8.

Connor J.J. & Morin N., 1971, " Perturbation techniques in the analysis of geometrically

nonlinear shells" . Proc. of Symp. on High Speed Comp. of Elastic Structures,

Liege, pp 683-706.

Criesfield M.A., 1983 , "An arc-length method including line search and acceleration",

International Journal for Numerical Method in Engineering, Vol. 19, pp. 1269-

Criesfield M.A., 1991, Nonlinear finite element analysis of solids and structures, John

Wiley & Sons Edition.

Damil N., 1990 ," De Ia theorie de Ia bifurcation au calcul des structures", These d'Etat,

Universite Hassan II, Cassablanca, Juin 1990.

Damil N., Potier-Ferry M., 1990, "A new method to compute perturbed bifurcations :

Application to the buckling of imperfect elastic structures". International

Journal of Engineering and Sciences, Vol. 28, n° 9, pp 943-957.

Damil N., Potier-Ferry M., Braikat B. , 1994 , " Une technique de perturbation pour le

calcul des structures avec fortes non-linearites", To appear in Comptes Rendus de

l'Academie des Sciences, Paris ..

Gallagher R. H. , 1975 , " Perturbation procedures in nonlinear finite element structural

analysis" Computational Mechanics- Lectures Notes in Mathematics, Vol 461,

Springer-Verlag, Berlin .

Glaum I.W. , Belytschko T., Masur E.F., 1975 ,"Buckling of structures with finite

prebuckling deformations - a perturbation FEA", International Journal Solids

and Structures, Vol 11, pp 1023-1033.

Masur E. F. & Schreyer H.L. , 1967 , " A second order approximation to the problem of

elastic instability", Proc. Symp. Theory of Shells, Donnell Anniv. Vol., Univ.

of Texas, Houston, pp 231-249.

Noor A. K., 1981, "Recent advances in reduction methods for nonlinear problems",

Computers & Structures, Vol 13, pp 31-44.

Noor A.K. & Andersen C.M., 1991 , "Hybrid analytical technique for the nonlinear

analysis of curved beams", In Non Linear Computational Mechanics - State of art,

P. Wriggers & W. Wagner Eds, Springer Verlag, pp 267-282.

Noor A. K. & Peters J.M. , 1980 , "Reduced basis technique for nonlinear analysis of

structures", AIAA Journal, Vol 18, n° 4, pp 455-462.

Noor A. K. & Peters J.M. , 1981," Tracing post-limit paths with reduced basis technique",

Computer Methods in Applied Mechanics and Engineering, Vol 28, pp 217-

Noor A. K. & Peters J.M. , 1983, "Recent advances in reduction methods for instability

of structures", Computers and Structures, Vol 16, pp 67-80.

Potier-Ferry M., 1987 , "Foundations of elastic post-buckling theory", in Buckling and

Post-buckling, Lecture Notes in Physics, 288, Springer-Verlag, pp 1-82.

Ramm E., 1981 , "Strategies for tracing the nonlinear response near limit points" in

Nonlinear Finite Element Analysis in Structural Mechanics, European US

Workshop, Ruhr Universitiit Bochum, Germany, Springer Verlag, Berlin, pp.

-89.

Riks E., 1972 , "The application of Newton's method to the problem of elastic stability",

Journal of Applied Mechanics, Vol. 39, pp 1060-1066.

Riks E., 1984,"Some computational aspect of the stability analysis of nonlinear

structures", Computer Methods in Applied Mechanics and Engineering, vol 47,

pp 219-259.

Thompson J.M.T. & Walker A.C. , 1968 , "The nonlinear perturbation analysis of

discrete structural systems", International Journal of Solids and Structures,

Vol 4, pp 757-768.

Walker A. C., 1969 , " A non-linear FEA of shallow circular arches" , International

Journal of Solids and Structures, Vol 5, pp 97-102.

Zienkiewicz, Taylor, 1991, The finite element method, Fourth edition, Mac Graw Hill.

Downloads

Published

1994-02-28

How to Cite

Cochelin, B. ., Damil, N. ., & Potier-Ferry, M. . (1994). The asymptotic-numerical method : an efficient perturbation technique for nonlinear structural mechanics. European Journal of Computational Mechanics, 3(2), 281–297. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3627

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 3 > >>