Basic ANM algorithms for path following problems
Keywords:
Asymptotic Numerical Method, continuation, bucking, thin shells, prediction-correctionAbstract
The Asymptotic Numerical Method (ANM) is a family of algorithms based on the computation of series to solve non-linear problems. How to use at best the informations included in the series ? How to define in an optimal way prediction-correction algorithms within ANM ? In this paper, the knowledges about these questions are reviewed. A complete bibliography is also presented, that shows a wide application field and the many variants offered by ANM algorithms.
Downloads
References
[ABI 02] ABICHOU H., ZAHROUNI H., POTIER-FERRY M., “Asymptotic numerical method
for problems coupling several non-linearities”, Computer Methods in Applied Mechanics
and Engineering, vol. 191, num. 51-52, 2002, p. 5795-5810.
[AGG 03] AGGOUNE V., ZAHROUNI H., POTIER-FERRY M., “High order predictioncorrection
algorithms for unilateral contact problems”, To appear in Journal of Computational
and Applied Mathematics, , 2003.
[ALL 02] ALLERY C., “Contribution à l’identification des bifurcations et à l’étude des écoulements
fluides par des systèmes dynamiques d’ordre faible (P.O.D.)”, Thèse de 3ème cycle,
Université de Poitiers, 2002.
[AMM 96] AMMAR S., “Méthode asymptotique numérique perturbée appliquée à la résolution
des problèmes non linéaires en grande rotation et grand déplacement”, Thèse, Université
Laval, Québec, 1996.
[AZR 92] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., “An asymptoticnumerical
method to compute bifurcating branches”, New advances in Computational
Structural Mechanics, Amsterdam, 1992, Ladavèze, P. and Zienkiewicz, O.C. (eds), Elsevier
Science Publishers, p. 117-131.
[AZR 93] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., “An asymptoticnumerical
method to compute the post-buckling behaviour of elastic plates and shells”,
International Journal for Numerical Methods in Engineering, vol. 36, 1993, p. 1251-1277.
[AZR 98] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., “An asymptoticnumerical
method for non-linear vibrations of elastic structures”, Structural Dynamic
Systems, Computational Techniques and Optimization, London, 1998, Gordon and Breach
Publishers, p. 103-141.
[AZR 99] AZRAR L., BENAMAR R., POTIER-FERRY M., “An asymptotic-numerical method
for large amplitude free vibrations of thin elastic plates”, Journal of Sound and Vibration,
vol. 220, num. 4, 1999, p. 695-727.
[AZR 02] AZRAR L., BOUTYOUR E., POTIER-FERRY M., “Non-linear forced vibrations of
plates by an asymptotic-numerical method”, Journal of Sound and Vibration, vol. 252,
num. 4, 2002, p. 657-674.
[BAG 03] BAGUET S., COCHELIN B., “On the behaviour of the ANM continuation in the
presence of bifurcations”, Communications in Numerical Methods in Engineering, vol. 19,
num. 6, 2003, p. 459-471.
[BEN 95] BENSAADI M., “Méthode asymptotique-numérique pour le calcul de bifurcations
de Hopf et de solutions périodiques”, Thèse de 3ème cycle, Université de Metz, 1995.
[BER 01] BERRAHMA-CHEKROUNN., FAFARDM., GERVAIS J., “Resolution of the transient
dynamic problem with arbitrary loading using the asymptotic method”, Journal of Sound
and Vibration, vol. 243, num. 3, 2001, p. 475-501.
[BOU 03] BOUTYOUR E., ZAHROUNI H., POTIER-FERRY M., BOUDI M., “Asymptoticnumerical
method for buckling analysis of shell structures with large rotation”, To appear
in Journal of Computational and Applied Mathematics, , 2003, p. -.
[BRA 97] BRAIKAT B., DAMIL N., POTIER-FERRY M., “Méthodes asymptotiques
numériques pour la plasticité”, Revue Européenne des Eléments Finis, vol. 6, 1997, p. 337-
[BRU 99] BRUNELOT J., “Simulation de la mise en forme à chaud par une méthode asymptotique
numérique”, Thèse de 3ème cycle, Université de Metz, 1999.
[CAD 97] CADOU J.-M., “Méthode asymptotique-numérique pour le calcul des branches
solutions et des instabilités dans les fluides et pour les problèmes d’interaction fluidestructure”,
Thèse de 3ème cycle, Université de Metz, 1997.
[CAD 01a] CADOU J.-M., COCHELIN B., DAMIL N., POTIER-FERRYM., “ANM for stationary
Navier-Stokes equations and with Petrov-Galerkin formulation”, International Journal
for Numerical Methods in Engineering, vol. 50, 2001, p. 825-845.
[CAD 01b] CADOU J.-M., MOUSTAGHFIR N., MALLIL E., DAMIL N., POTIER-FERRY M.,
“Linear iterative solvers based on perturbation techniques”, Comptes Rendus de l’Académie
des Sciences, Série IIb, Mechanics, vol. 329, num. 6, 2001, p. 457-462.
[CAD 04] CADOU J.-M., DAMIL N., POTIER-FERRY M., BRAIKAT B., “Projection techniques
to improve high order iterative correctors”, To appear in Finite Element in Analysis
and Design, , 2004.
[CHE 00] CHEN S., YANG X., LIAN H., “Comparison of several eigenvalue reanalysis methods
for modified structures”, Structural an Multidisciplinary Optimization, vol. 20, 2000,
p. 253-259.
[COC 94a] COCHELIN B., “A path following technique via an asymptotic-numerical method”,
Computers and Structures, vol. 53, num. 5, 1994, p. 1181-1192.
[COC 94b] COCHELIN B., DAMIL N., POTIER-FERRY M., “The asymptotic-numerical
method : an efficient perturbation technique for non-linear structural mechanics”, Revue
Européenne des Eléments Finis, vol. 5, num. 2, 1994, p. 415-442.
[COC 94c] COCHELIN B., DAMIL N., POTIER-FERRY M., “Asymptotic-Numerical Method
and Padé approximants for non-linear elastic structures”, International Journal for Numerical
Methods in Engineering, vol. 37, 1994, p. 1187-1213.
[COC 00] COCHELIN B., COMPAIN C., “An asymptotic numerical method for non-linear
transient analysis”, Revue Européenne des Eléments Finis, vol. 9, 2000, p. 113-128.
[DAM 90] DAMIL N., POTIER-FERRYM., “A new method to compute perturbed bifurcations
: application to the buckling of imperfect elastic structures”, International Journal for
Engineering Science, vol. 28, num. 9, 1990, p. 943-957.
[DAM 99] DAMIL N., POTIER-FERRY M., NAJAH A., CHARI R., LAHMAM H., “An iterative
method based upon Padé approximants”, Communications in Numerical Methods in
Engineering, vol. 15, 1999, p. 701-708.
[DAY 01] DAYA E., POTIER-FERRY M., “A numerical method for non-linear eigenvalue
problems application to vibrations of viscoelastic structures”, Computers and Structures,
vol. 79, num. 5, 2001, p. 533-541.
[DEB 97] DE BOER H., KEULEN F., “Padé approximants applied to a non-linear finite element
solution strategy”, Communications in Numerical Methods in Engineering, vol. 13,
, p. 593-602.
[DUI 03] DUIGOU L., DAYA E., POTIER-FERRY M., “Iterative algorithms for non-linear
eigenvalue problems. Application to vibrations of viscoelastic shells”, Computer Methods
in Applied Mechanics and Engineering, vol. 192, num. 11-12, 2003, p. 1323-1335.
[ELH 98] ELHAGE-HUSSEIN A., DAMIL N., POTIER-FERRY M., “An asymptotic numerical
algorithm for frictionless contact problems”, Revue Européenne des Eléments Finis, vol. 7,
, p. 119-130.
[ELH 00] ELHAGE-HUSSEIN A., POTIER-FERRY M., DAMIL N., “A numerical continuation
method based on Padé approximants”, International Journal of Solids and Structures,
vol. 37, 2000, p. 6981-7001.
[ELM 02] EL MOKHTARI R., CADOU J.-M., POTIER-FERRY M., “A two grid algorithm
based on perturbation and homotopy methods”, Comptes Rendus Mécanique, vol. 330,
num. 12, 2002, p. 825-830.
[ESS 03] ESSAKHI M., BRAIKAT B., LAHMAM H., CADOU J.-M., DAMIL N., POTIERFERRY
M., “Sous-Structuration et méthode asymptotique numérique en élasticité non
linéaire”, Revue Européenne des Eléments Finis, vol. 12, num. 4, 2003, p. 407-426.
[FAF 97] FAFARD M., HENCHI K., GENDRON G., AMMAR S., “Application of an asymptotic
method to transient dynamic problems”, Journal of Sound and Vibration, vol. 208, 1997,
p. 73-99.
[GAL 75] GALLAGHER R., “Perturbation procedures in non-linear finite element structural
analysis”, vol. 461, Springer-Verlag, Berlin, 1975.
[GAL 00] GALLIET I., “Une version parallèle des méthodes asymptotiques numériques. Application
à des structures complexes à base d’élastomères”, Thèse de 3ème cycle, Université
de Marseille II, 2000.
[GER 02] GERVAIS J., SADIKY H., “A new steplength control for continuation with the
asymptotic numerical method”, IMA Journal of Numerical Analysis, vol. 22, num. 2,
, p. 207-229.
[HAD 97] HADJI S., DHATT G., “Asymptotic-Newton method for solving incompressible
flows”, International Journal for Numerical Methods in Fluids, vol. 25, num. 8, 1997,
p. 861-878.
[IMA 01] IMAZATÈNE A., CADOU J.-M., ZAHROUNI H., POTIER-FERRY M., “A new reduced
basis method fon non-linear problems”, Revue Européenne des Eléments Finis,
vol. 10, num. 1, 2001, p. 55-76.
[JAM 01] JAMAI R., DAMIL N., “Quadratic approximants in the asymptotic-numerical
method”, Comptes Rendus de l’Académie des Sciences, Série IIb, Mechanics, vol. 329,
num. 11, 2001, p. 809-814.
[JAM 02] JAMAL M., BRAIKAT B., BOUTMIR S., DAMIL N., POTIER-FERRY M., “A high
order implicit algorithm for solving nonlinear problems”, Computational Mechanics,
vol. 28, 2002, p. 375-390.
[KAW 76] KAWAHARA M., YOSHIMURA N., NAKAGAWA K., OHSAKA H., “Steady and
unsteady finite element analysis of incompressible viscous fluid”, International Journal for
Numerical Methods in Engineering, vol. 10, 1976, p. 437-456.
[KES 01] KESSAB N., “Un algorithme de prédiction-correction d’ordre élevé basé sur une
linéarisation partielle pour les problèmes fortement non linéaires”, Thèse de 3ème cycle,
Université Hassan II, Mohammedia, Casablanca, Maroc, 2001.
[LAH 02] LAHMAM H., CADOU J.-M., ZAHROUNI H., DAMIL N., POTIER-FERRY M.,
“High-order predictor-corrector algorithms”, International Journal for Numerical Methods
in Engineering, vol. 55, 2002, p. 685-704.
[LOP 98] LOPEZ S., “A scheme for tracing the equilibrium path in perturbation methods”,
Computer Methods in Applied Mechanics and Engineering, vol. 154, num. 3-4, 1998,
p. 193-202.
[LOP 00] LOPEZ S., “An effective parametrization for asymptotic expansions”, Computer
Methods in Applied Mechanics and Engineering, vol. 189, num. 1, 2000, p. 297-311.
[LOP 01] LOPEZ S., “Geometrically nonlinear analysis of plates and cylindrical shells by a
predictor-corrector method”, Computer and Structures, vol. 79, num. 15, 2001, p. 1405-
[MAL 00] MALLIL E., LAHMAM H., DAMIL N., POTIER-FERRY M., “An iterative process
based on homotopy and perturbation techniques”, Computer Methods in Applied Mechanics
and Engineering, vol. 190, 2000, p. 1845-1858.
[MOR 95] MORDANE S., “Calcul de la houle non-linéaire et instationnaire par une méthode
asymptotique numérique”, Thèse de 3ème cycle, Université de Hassann II, Faculté des
Sciences Ben M’Sik, Casblanca Maroc, 1995.
[NAJ 98] NAJAH A., COCHELIN B., DAMIL N., POTIER-FERRY M., “A critical review
of asymptotic-numerical methods”, Archives of Computational Methods in Engineering,
vol. 5, 1998, p. 3-22.
[NOO 81a] NOOR A., “Recent advances in Reduction methods for non-linear problems”,
Computer & Structures, vol. 13, 1981, p. 31-44.
[NOO 81b] NOOR A., PETERS J., “Tracing post-limits paths with reduced basic technique”,
Computer Methods in Applied Mechanics and Engineering, vol. 28, 1981, p. 217-240.
[NOO 85] NOOR A., “Hybrid analytical techniques for nonlinear analysis of structures”, AIAA
Journal, vol. 23, num. 6, 1985, p. 938-946.
[POT 97] POTIER-FERRY M., DAMIL N.AND BRAIKAT B., DESCAMPS J.AND CADOU J.-
M., CAO H.L.AND ELHAGE-HUSSEIN A., “Traitement des fortes non-linéarités par la
méthode asymptotique numérique”, Comptes Rendus de l’Académie des Sciences Paris,
vol. t. 324, Série II b, 1997, p. 171-177.
[RIK 84] RIKS E., “Some computational aspect of the stability analysis of non-linear structures”,
Computer Methods in Applied Mechanics and Engineering, vol. 47, 1984, p. 219-
[THO 68] THOMPSON J.,WALKER A., “The non-linear perturbative analysis of discrete structural
systems”, Int. J. Sol. Struc., vol. 4, 1968, p. 757-768.
[TRI 96] TRI A., COCHELIN B., POTIER-FERRY M., “Résolution des équations de Navier-
Stokes et détection des bifurcations par une méthode asymptotique numérique”, Revue
Européenne des Eléments Finis, vol. 5, 1996, p. 415-442.
[VAN 98] VANNUCCI P., COCHELIN B., DAMIL N., POTIER-FERRY M., “An asymptoticnumerical
method to compute bifurcating branches”, International Journal for Numerical
Methods in Engineering, vol. 41, 1998, p. 1365-1389.
[YOK 76] YOKOO Y., NAKAMURA T., UETANI K., “The incremental perturbation method
for large displacement analysis of elastic-plastic structures”, International Journal for Numerical
Methods in Engineering, vol. 10, 1976, p. 503-525.
[ZAH 98] ZAHROUNI H., ELASMAR H., DAMIL N., POTIER-FERRY M., “Asymptoticnumerical
method for non-linear constitutive laws”, Revue Européenne des Eléments Finis,
vol. 7, num. 7, 1998, p. 841-869.
[ZAH 99] ZAHROUNI H., COCHELIN B., POTIER-FERRY M., “Computing finite rotations of
shells by an asymptotic-numerical method”, Computer Methods in Applied Mechanics and
Engineering, vol. 175, 1999, p. 71-85.