Experimentation d 'une approche parallele en calcul des structures
Keywords:
structures, computation, parallelismAbstract
We describe the headlines of a mechanical formulation that inforce a « parallel » approach for structural analysis in small pertubations, restricted here to linear elasticity. The description of the medium is an assembly of substructures and interfaces. Liaisons and contacts between substructures are treated by the interfaces which possess their own behaviour. Convergence is proved under classical stability assumptions. Several exemples figure out the behaviour of the propounded approach on parallel architecture computers.
Downloads
References
(BRA 86] Bramble J. H., Pasciak J. E. et Schatz A. H., The construction
of preconditioners for elliptic problems by substructuring, I, Math.
Camp., vol. 47, no 175, 1986, pp. 103-134.
(BUO 93] Buoni J.J., Farrell P.A. et Ruttan A., Algorithms for LU decomposition
on a shared memory multiprocessor, Pamllel Computzng,
vol. 19, 1993, pp. 925-937.
(CAR 91] Carmona E. A. et Rice M. D., Modeling the serial and parallel
fractions of a parallel algorithm, Journal of Parallel and Distributed
Computing, no 13, 1991, pp. 286-298.
(CHA 90] ChanT., Glowinski R., Periaux J. et Windlun 0. (edite par), Domain
Decomposition Methods for Partial Differential Equations,
SIAM, Philadelphie, USA, 1990.
(COC 95] Cocu M., Pratt E. et Raous M., Analysis of an incremental formulation
for frictional contact problems, In Raous et al. (RAO 95],
pp. 13-20.
(DEB 90] Debordes 0. et Michel J .C., Paraltelisation des problemes nonlineaires,
Calcul des Structures et Intelligence A rtificielle, ed. par
Fouet J-M., Ladeveze P. et Ohayon R., pp. 223-232, Pluralis, 1990.
(DER 92] de Roeck Y.-H., Le Tallec P. et Vidrascu M., A domain decomposed
solver for nonlinear elasticity, Camp. Meth. Appl. Mech. Engng.,
no 99, 1992, pp. 187-207.
(ESC 94] Escaig Y., Vayssade M. et Touzot G., Une methode de decomposition
de domaine multifrontale multiniveaux, Revue Europeenne des
Elements Finis, vol. 3, 1994, pp. 311-337.
(FAR 88] Farhat C., A simple and efficient automatic fern domain decomposer,
Computers f3 Structures, vol. 28, no 5, 1988, pp. 579-602.
(FAR 91] Farhat C. et Roux F.-X., A method of finite element tearing and
interconnecting and its parallel solution algorithm, Int. J. Numer.
Meth. Engng., vol. 32, 1991, pp. 1205-1227.
(FAR 94a] Farhat C., Mandel J. et Roux F.-X., Optimal properties of the
FETI domain decomposition method, Camp. Meth. Appl. Mech.
Engng., vol. 115, 1994, pp. 365-385.
(FAR 94b] Farhat C. et Roux F.-X., Implicit parallel processing in structural
mechanics, Computational Mechanics Advances, ed. par Oden
J. Tinsley, North-Holland, Juin 1994.
(GLO 90] Glowinski R. et Le Tallec P., Augmented lagrangian interpretation
of the nonoverlapping schwarz alternating method, In Chan et al.
(CHA 90], pp. 224-231.
[LAD 85] Ladeveze J., Algorithmes adaptes aux calculs vectoriel et par allele
pour des methodes de decomposition de domaines, Actes du 3eme
colloque Tendances actuelles en calcul de structures, pp. 893-907,
Bastia, Novembre 1985.
[LAD 92a] Ladeveze P., New advances in large time increment method, New
advances in computational st1·uctural mechanics, ed. par Ladeveze
P. et Zienkiewicz 0. C., pp. 1-18, Elsevier, 1992.
[LAD 92b] Ladeveze P. et Lorong Ph., A large time increment approach with
domain decomposition technique for mechanical non linear problems,
Camp. Meths. Appl. Mech. Engrg., ed. par INRIA, pp. 569-
, 1992.
[LAD 93] Ladeveze P. et Lorong Ph., Formulations et strategies paralleles
pour !'analyse non lineaire des structures, Colloque national en calcui
des structures, pp. 910-919, Giens, Mai 1993.
[LAD 96] Ladeveze P., Mecanique non-lineaire des structures ~ Nouvelle
approche et methodes de calcul non incrementales, Paris, Hermes,
[LIO 90] Lions P.L., On the schwarz alternating method III. A variant for
nonoverlapping subdomains, In Chan et al. [CHA 90].
[NOO 94] Noor A.K., New computing systems, future high performance computing
environments and their implications on large-scale problems,
Advances in parallel and vector processing for structural mechanics,
ed. par Topping B.H.V. et Papadrakakis M., pp. 1-9, Edinbourg,
Scotland, 1994.
[PAD 91] Padovan J. et K wang A., Hierarchically parallelized constrained
nonlinear solvers with automated substructuring, Computers f3
Structures, vol. 41, no 1, 1991, pp. 7-33.
[PAN 93] Pan V. et Reif J., Fast and efficient parallel solution of sparse linear
systems, SIAM J. Sci. Comput., vol. 22, no 6, 1993, pp. 1227-1250.
[RAO 95] Raous M., Jean M. et Moreau J.-J. (edite par), Proceedings of the
Second Contact Mechanics International Symposium, New York,
Plenum Press, 1995.
[ROU 90] Roux F.-X., Methodes de resolution par sous-domaines en statique,
La Recherche Aerospatiale, no 1, 1990, pp. 37-48.
[VER 88] Verpeaux P., Charras T. et Millard A., CASTEM 2000: une approche
moderne du calcul des structures, Calcul des Structures et
Intelligence Artificielle, ed. par Fouet J-M., Ladeveze P. et Ohayon
R., pp. 261-271, Pluralis, 1988.
[WRO 95) Wronski M. et Jean M., Some computational aspects of structural
dynamics problems with frictional contact, In Raous et al.
[RAO 95), pp. 137-144.
[YAG 93) Yagawa G., Yoshioka A., Yoshimura S. et Soneda N., A parallel
finite element method with a supercomputer network, Computers
f3 Structm·es, vol. 47, 1993, pp. 407-418.
[YSE 86) Yserentant H., On the multi-level splitting of finite element spaces,
Num. Math., vol. 49, 1986, pp. 379-412.
[ZIE 91) Zienkiewicz O.C. et Taylor R.L., The finite element method, Me
Graw-Hill, 1991, quatrieme edition.