Modélisation de problèmes non linéaires de grande taille : grandes déformations et autocontact dans un milieu cellulaire
Keywords:
cellular media, finite deformations, self-contact, generalized Newton method, domain decompositionAbstract
The paper presents a numerical modelling of the non linear behaviour of a cellular medium submitted to strong loadings. Efficient numerical tools are performed. The non linearities are issued from finite deformations and self-contact conditions involving in the cellular network with thin walls. The non linear solver is based on a generalized Newton method which deals simultaneously with the two non linearities. The linearized system is solved by a domain decomposition method adapted to contact and friction. The numerical simulations using increasing size samples underline the microbuckling phenomenae and the influence of the contact condition on the localization process characterized by shear bands.
Downloads
References
[ALA 91] ALART P., CURNIER A., « A mixed formulation for frictional contact problems
prone to Newton like solution methods », Comp. Meth. Appl. Mech. Eng., vol. 92, 1991,
p. 353-375.
[ALA 97] ALART P., « Méthode de Newton généralisée en mécanique du contact », J. Math.
Pures Appl., vol. 76, 1997, p. 83-108.
[ALA 00] ALART P., BARBOTEU M., LETALLEC P., VIDRASCU M., « Méthode de Schwarz
additive avec solveur grossier pour problèmes non symétriques », C. R. Acad. Sci., vol. 331,
n I, 2000, p. 399-404.
[BAR 99] BARBOTEU M., « Contact, frottement et techniques de calcul parallèle », Thèse de
doctorat, Université de Montpellier II, 1999.
[BAR 01] BARBOTEU M., ALART P., VIDRASCU M., « A domain decomposition strategy for
non classical frictional multicontact problems », Comp. Meth. Appl. Mech. Eng., vol. 190,
n 37-38, 2001, p. 4785-4803.
[CHA 97] CHAMPANEY L., COGNARD J. Y., DUREISSEIX D., LADEVÈZE P., « Large scale
applications on parallel computers od a mixed domain decomposition method », Comp.
Mech., vol. 19, 1997, p. 253-263.
[CIA 82] CIARLET P. G., GEYMONAT G., « Sur les lois de comportement en élasticité nonlinéaire
compressible », C. R. Acad. Sci., vol. 295, n I, 1982, p. 423-426.
[DUR 01] DUREISSEIX D., FARHAT C., « A numerically scalable domain decomposition method
for frictionless contact problems », Int. J. for Num. Meth. in Eng., vol. 50, n 12,
, p. 2643-2666.
[GEY 93] GEYMONAT G., MÜLLER S., TRIANTAFYLLIDIS N., « Homogenization of non
linearly elastic materials ; microscopic bifurcation and macroscopic loss of rank-one
convexity », Arch. Rational Mech. Anal., vol. 122, 1993, p. 231-290.
[GIB 88] GIBSON L. J., ASHBY M. F., Cellular solids, structure and properties, Pergamon
press, 1988.
[LET 94] LETALLEC P., « Domain decomposition methods in computational mechanics »,
Computational Mechanics Advances, North-Holland, 1994, In J. T. Oden, editor, p. 121-
[MüL 87] MÜLLER S., « Homogenization of nonconvex integral functionals and cellular elastic
materials », Arch. Rational Mech. Anal., vol. 99, 1987, p. 189-212.
[PIE 97] PIETRZAK G., CURNIER A., « Continuum mechanics modelling and augmented Lagrangian
formulation of multibody, large deformation frictional contact problems », CIMNE
editor, Comput. Plast., , 1997, p. 878-973.