Approche multiéchelle des systèmes de tenségrité

Authors

  • Shéhérazade Nineb Laboratoire de Mécanique et Génie Civil UM2-CNRS CC048 Place Eugène Bataillon F-34095 Montpellier CEDEX 5
  • Pierre Alart Laboratoire de Mécanique et Génie Civil UM2-CNRS CC048 Place Eugène Bataillon F-34095 Montpellier CEDEX 5
  • David Dureisseix Laboratoire de Mécanique et Génie Civil UM2-CNRS CC048 Place Eugène Bataillon F-34095 Montpellier CEDEX 5

Keywords:

LATIN micro/macro, multiscale, discrete systems, nonsmooth, domain decomposition

Abstract

A specific feature of multicontact problems is the large number of contact or interaction conditions that leads to large scale problems. Several approaches, among them algorithm parallelization, have been designed to tackle the numerical difficulties arising from such problems. This work belongs to these algorithms, using the LATIN (LArge Time INcrement) multiscale approach. As a first step, the case of tensegrity systems is considered as a particular discrete medium.

Downloads

Download data is not yet available.

References

Barboteu M., Alart P., Vidrascu M., « A domain decomposition strategy for nonclassical frictional

multi-contact problems », Computer Methods in Applied Mechanics and Engineering,

vol. 190, p. 4785-4803, 2001.

Dureisseix D., Farhat C., « A numerically scalable domain decomposition method for the solution

of frictionless contact problems », International Journal for Numerical Methods in

Engineering, vol. 50, p. 2643-2666, 2001a.

Dureisseix D., Ladevèze P., Loiseau O., « A micro/macro and parallel computational strategy

for highly heterogeneous structures », International Journal for Numerical Methods in Engineering,

vol. 52, p. 121-138, 2001b.

Katta M., Principal pivoting methods for LCP, Department of Industrial and Operations Engineering,

University of Michigan, 1997.

Ladevèze P., Dureisseix D., « A micro/macro approach for parallel computing of heterogeneous

structures », Int. J. for Comput. Civil and Struct. Engng., vol. 1, p. 18-28, 2000.

Loiseau O., Ladevèze P., Dureisseix D., « Sur une stratégie de calcul multiéchelle pour l’analyse

des structures composites : discrétisation et performances », Revue Européenne des

Éléments Finis, vol. 11, p. 349-362, 2002.

Moreau J., « Numerical aspects of sweeping process », Computer Methods in Applied Mechanics

and Engineering, vol. 177, p. 329-349, 1999.

Motro R., Tensegrity, Hermes Science Publishing, London, 2003.

Nineb S., Alart P., Dubois F., Dureisseix D., « Solveurs de systèmes de complémentarité et

application à la tenségrité », Actes du 17e Congrès Français de Mécanique, Troyes, 2005.

Nineb S., Alart P., Dureisseix D., « Domain decomposition approach for nonsmooth discrete

problems - example of a tensegrity structure », Computers and Structures, à paraître.

Nouy A., Ladevèze P., Loiseau O., « A multiscale computational approach for contact problems

», Computer Methods in Applied Mechanics and Engineering, vol. 191, p. 4869-4891,

Quirant J., Kazi-Aoual M., Motro R., « Designing tensegrity systems : the case of a double layer

grid », Engineering Structures, vol. 25(9), p. 1121-1130, 2003.

Renouf M., Alart P., « Conjugate gradient type algorithms for frictional multi-contact problems :

applications to granular materials », Computer Methods in Applied Mechanics and Engineering,

a.

Renouf M., Dubois F., Alart P., « A parallel version of non smooth contact dynamics algorithm

applied to simulation of granular medium », Journal of Computational and Applied

Mathematics, vol. 168, p. 375-382, 2004b.

Downloads

Published

2006-07-07

How to Cite

Nineb, S. ., Alart, P. ., & Dureisseix, D. . (2006). Approche multiéchelle des systèmes de tenségrité. European Journal of Computational Mechanics, 15(1-3), 319–328. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2157

Issue

Section

Original Article

Most read articles by the same author(s)