Approche multiéchelle des systèmes de tenségrité
Keywords:
LATIN micro/macro, multiscale, discrete systems, nonsmooth, domain decompositionAbstract
A specific feature of multicontact problems is the large number of contact or interaction conditions that leads to large scale problems. Several approaches, among them algorithm parallelization, have been designed to tackle the numerical difficulties arising from such problems. This work belongs to these algorithms, using the LATIN (LArge Time INcrement) multiscale approach. As a first step, the case of tensegrity systems is considered as a particular discrete medium.
Downloads
References
Barboteu M., Alart P., Vidrascu M., « A domain decomposition strategy for nonclassical frictional
multi-contact problems », Computer Methods in Applied Mechanics and Engineering,
vol. 190, p. 4785-4803, 2001.
Dureisseix D., Farhat C., « A numerically scalable domain decomposition method for the solution
of frictionless contact problems », International Journal for Numerical Methods in
Engineering, vol. 50, p. 2643-2666, 2001a.
Dureisseix D., Ladevèze P., Loiseau O., « A micro/macro and parallel computational strategy
for highly heterogeneous structures », International Journal for Numerical Methods in Engineering,
vol. 52, p. 121-138, 2001b.
Katta M., Principal pivoting methods for LCP, Department of Industrial and Operations Engineering,
University of Michigan, 1997.
Ladevèze P., Dureisseix D., « A micro/macro approach for parallel computing of heterogeneous
structures », Int. J. for Comput. Civil and Struct. Engng., vol. 1, p. 18-28, 2000.
Loiseau O., Ladevèze P., Dureisseix D., « Sur une stratégie de calcul multiéchelle pour l’analyse
des structures composites : discrétisation et performances », Revue Européenne des
Éléments Finis, vol. 11, p. 349-362, 2002.
Moreau J., « Numerical aspects of sweeping process », Computer Methods in Applied Mechanics
and Engineering, vol. 177, p. 329-349, 1999.
Motro R., Tensegrity, Hermes Science Publishing, London, 2003.
Nineb S., Alart P., Dubois F., Dureisseix D., « Solveurs de systèmes de complémentarité et
application à la tenségrité », Actes du 17e Congrès Français de Mécanique, Troyes, 2005.
Nineb S., Alart P., Dureisseix D., « Domain decomposition approach for nonsmooth discrete
problems - example of a tensegrity structure », Computers and Structures, à paraître.
Nouy A., Ladevèze P., Loiseau O., « A multiscale computational approach for contact problems
», Computer Methods in Applied Mechanics and Engineering, vol. 191, p. 4869-4891,
Quirant J., Kazi-Aoual M., Motro R., « Designing tensegrity systems : the case of a double layer
grid », Engineering Structures, vol. 25(9), p. 1121-1130, 2003.
Renouf M., Alart P., « Conjugate gradient type algorithms for frictional multi-contact problems :
applications to granular materials », Computer Methods in Applied Mechanics and Engineering,
a.
Renouf M., Dubois F., Alart P., « A parallel version of non smooth contact dynamics algorithm
applied to simulation of granular medium », Journal of Computational and Applied
Mathematics, vol. 168, p. 375-382, 2004b.