Mixed versus impulse-oriented domain decomposition method for granular dynamics

Authors

  • Damien Iceta Laboratoire de Mécanique et Génie Civil Université Montpellier 2/CNRS UMR5508, CC048 Place Eugène Bataillon F-34095 Montpellier cedex 5
  • David Dureisseix Laboratoire de Mécanique et Génie Civil Université Montpellier 2/CNRS UMR5508, CC048 Place Eugène Bataillon F-34095 Montpellier cedex 5
  • Pierre Alart Laboratoire de Mécanique et Génie Civil Université Montpellier 2/CNRS UMR5508, CC048 Place Eugène Bataillon F-34095 Montpellier cedex 5

DOI:

https://doi.org/10.13052/EJCM.18.429-443

Keywords:

non smooth dynamics, LATIN, NSCD, numerical scalability

Abstract

In this article, we are concerned with the numerical simulation of granular media, characterized as a large scale discrete system, involving non smooth interactions. For such problems, domain decomposition approaches are potential interesting alternative solvers. Herein, two robust and generic monoscale approaches are formulated and compared. The first numerical results reveal a non standard behavior in term of numerical scalability.

Downloads

Download data is not yet available.

References

Alart P., Dureisseix D., “A scalable multiscale LATIN method adapted to nonsmooth discrete

media”, Computer Methods in Applied Mechanics and Engineering, vol. 197, n° 5, p. 319-

, 2008.

Alart P., Dureisseix D., Renouf M., “Using nonsmooth analysis for numerical simulation of

contact mechanics”, Nonsmooth Mechanics and Analysis: Theoretical and Numerical Advances,

vol. 12 of Advances in Mechanics and Mathematics, Kluwer Academic Press, chapter

, p. 195-207, 2005.

Avery P., Farhat C., “The FETI family of domain decomposition methods for inequalityconstrained

quadratic programming: Application to contact problems with conforming and

nonconforming interfaces”, Computer Methods in Applied Mechanics and Engineering,

In Press, Accepted Manuscript.

Avery P., Rebel G., Lesoinne M., Farhat C., “A numerically scalable dual-primal substructuring

method for the solution of contact problems – Part I: The frictionless case”, Computer

Methods in Applied Mechanics and Engineering, vol. 193, p. 2403-2426, 2004.

Barboteu M., Alart P., Vidrascu M., “A domain decomposition strategy for nonclassical frictional

multi-contact problems”, Computer Methods in Applied Mechanics and Engineering,

vol. 190, p. 4785-4803, 2001.

Cundall P. A., Stack O. D. L., “A discrete numerical model for granular assemblies”, Geotechnique,

vol. 29, n° 1, p. 47-65, 1979.

De Roeck Y.-H., Le Tallec P., Vidrascu M., “A domain decomposed solver for nonlinear elasticity”,

Computer Methods in Applied Mechanics and Engineering, vol. 99, p. 187-207,

Dilintas G., Laurent-Gengoux P., Trystram D., “A conjugate projected gradient method with

preconditioning for unilateral contact problems”, Computers and Structures, vol. 29, n° 4,

p. 675-680, 1988.

Dostál Z., Friedlander A., Santos S., “Solution of coercive and semicoercive contact problems

by FETI domain decomposition”, Contemporary Mathematics, vol. 218, p. 82-93, 1998.

Dostál Z., Gomes Neto F. A. M., Santos S. A., “Solution of contact problems by FETI domain

decomposition with natural coarse space projection”, Computer Methods in Applied

Mechanics and Engineering, vol. 190, n° 13-14, p. 1611-1627, 2000.

Dostál Z., Horák D., Kucera R., Vondrák V., Haslinger J., Dobiás J., Pták S., “FETI based

algorithms for contact problems: scalability, large displacements and 3D Coulomb friction”,

Computer Methods in Applied Mechanics and Engineering, vol. 194, n° 2-5, p. 395-409,

Dureisseix D., Farhat C., “A numerically scalable domain decomposition method for the solution

of frictionless contact problems”, International Journal for Numerical Methods in

Engineering, vol. 50, n° 12, p. 2643-2666, 2001.

Farhat C., Roux F.-X., “A method of finite element tearing and interconnecting and its parallel

solution algorithm”, International Journal for Numerical Methods in Engineering, vol. 32,

n° 6, p. 1205-1227, 1991.

Glocker C., Pfeiffer F., “Multiple impacts with friction in rigid multibody systems.”, Nonlinear

Dynamics, Transactions of A.S.M.E., vol. 7, n° 4, p. 471-497, 1995.

Haslinger J., Dostál Z., Kucera R., “On a splitting type algorithm for the numerical realization

of contact problems with Coulomb friction”, Computer Methods in Applied Mechanics and

Engineering, vol. 191, n° 21-22, p. 2261-2281, 2002.

Jean M., “The non-smooth contact dynamics method”, Computer Methods in Applied Mechanics

and Engineering, vol. 177, p. 235-257, 1999.

Ladevèze P., Nonlinear computational structural mechanics — New approaches and nonincremental

methods of calculation, Springer Verlag, 1999.

Ladevèze P., Nouy A., Loiseau O., “A multiscale computational approach for contact problems”,

Computer Methods in Applied Mechanics and Engineering, vol. 191, p. 4869-4891,

Liu C., Zhao Z., Brogliato B., “Frictionless multiple impacts in multibody systems. I. Theoretical

framework”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Science, vol. 464, n° 2100, p. 3193-3211, 2008.

Liu C., Zhao Z., Brogliato B., “Frictionless multiple impacts in multibody systems. II. Numerical

algorithm and simulation results”, Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Science, vol. 465, n° 2101, p. 1-23, 2009.

Mandel J., “Balancing domain decomposition”, Communications in Applied Numerical Methods,

vol. 9, p. 233-241, 1993.

May H.-O., “The conjugate gradient method for unilateral problems”, Computers and Structures,

vol. 12, n° 4, p. 595-598, 1986.

Mobasher Amini A., Dureisseix D., Cartraud P., “Multi-scale domain decomposition method for

large scale structural analysis with a zooming technique: Application to plate assembly”,

International Journal for Numerical Methods in Engineering, vol. 79, n° 4, p. 417-443,

Moreau J. J., “Numerical aspects of sweeping process”, Computer Methods in Applied Mechanics

and Engineering, vol. 177, p. 329-349, 1999.

Nedderman R., Statics and kinematics of granular materials, Cambridge university Press, Cambridge,

Nineb S., Alart P., Dureisseix D., “Domain decomposition approach for nonsmooth discrete

problems, example of a tensegrity structure”, Computers and Structures, vol. 85, n° 9,

p. 499-511, 2007.

Radjai F., Wolf D. E., Jean M., Moreau J. J., “Bimodal character of stress transmission in

granular packings”, Physical Review Letters, vol. 80, n° 1, p. 61-64, 1998.

Rebel G., Farhat C., Lesoinne M., Avery P., “A scalable Dual-Primal domain decomposition

method for the solution of contact problems with friction”, 7th U.S. National Congress on

Computational Mechanics — USNCCM7, 2003.

Renouf M., Alart P., “Conjugate gradient type algorithms for frictional multi-contact problems:

Applications to granular materials”, Computer Methods in Applied Mechanics and Engineering,

vol. 194, p. 2019-2041, 2004.

Downloads

Published

2009-07-08

How to Cite

Iceta, D. ., Dureisseix, D. ., & Alart, P. . (2009). Mixed versus impulse-oriented domain decomposition method for granular dynamics. European Journal of Computational Mechanics, 18(5-6), 429–443. https://doi.org/10.13052/EJCM.18.429-443

Issue

Section

Original Article

Most read articles by the same author(s)