Mixed versus impulse-oriented domain decomposition method for granular dynamics
DOI:
https://doi.org/10.13052/EJCM.18.429-443Keywords:
non smooth dynamics, LATIN, NSCD, numerical scalabilityAbstract
In this article, we are concerned with the numerical simulation of granular media, characterized as a large scale discrete system, involving non smooth interactions. For such problems, domain decomposition approaches are potential interesting alternative solvers. Herein, two robust and generic monoscale approaches are formulated and compared. The first numerical results reveal a non standard behavior in term of numerical scalability.
Downloads
References
Alart P., Dureisseix D., “A scalable multiscale LATIN method adapted to nonsmooth discrete
media”, Computer Methods in Applied Mechanics and Engineering, vol. 197, n° 5, p. 319-
, 2008.
Alart P., Dureisseix D., Renouf M., “Using nonsmooth analysis for numerical simulation of
contact mechanics”, Nonsmooth Mechanics and Analysis: Theoretical and Numerical Advances,
vol. 12 of Advances in Mechanics and Mathematics, Kluwer Academic Press, chapter
, p. 195-207, 2005.
Avery P., Farhat C., “The FETI family of domain decomposition methods for inequalityconstrained
quadratic programming: Application to contact problems with conforming and
nonconforming interfaces”, Computer Methods in Applied Mechanics and Engineering,
In Press, Accepted Manuscript.
Avery P., Rebel G., Lesoinne M., Farhat C., “A numerically scalable dual-primal substructuring
method for the solution of contact problems – Part I: The frictionless case”, Computer
Methods in Applied Mechanics and Engineering, vol. 193, p. 2403-2426, 2004.
Barboteu M., Alart P., Vidrascu M., “A domain decomposition strategy for nonclassical frictional
multi-contact problems”, Computer Methods in Applied Mechanics and Engineering,
vol. 190, p. 4785-4803, 2001.
Cundall P. A., Stack O. D. L., “A discrete numerical model for granular assemblies”, Geotechnique,
vol. 29, n° 1, p. 47-65, 1979.
De Roeck Y.-H., Le Tallec P., Vidrascu M., “A domain decomposed solver for nonlinear elasticity”,
Computer Methods in Applied Mechanics and Engineering, vol. 99, p. 187-207,
Dilintas G., Laurent-Gengoux P., Trystram D., “A conjugate projected gradient method with
preconditioning for unilateral contact problems”, Computers and Structures, vol. 29, n° 4,
p. 675-680, 1988.
Dostál Z., Friedlander A., Santos S., “Solution of coercive and semicoercive contact problems
by FETI domain decomposition”, Contemporary Mathematics, vol. 218, p. 82-93, 1998.
Dostál Z., Gomes Neto F. A. M., Santos S. A., “Solution of contact problems by FETI domain
decomposition with natural coarse space projection”, Computer Methods in Applied
Mechanics and Engineering, vol. 190, n° 13-14, p. 1611-1627, 2000.
Dostál Z., Horák D., Kucera R., Vondrák V., Haslinger J., Dobiás J., Pták S., “FETI based
algorithms for contact problems: scalability, large displacements and 3D Coulomb friction”,
Computer Methods in Applied Mechanics and Engineering, vol. 194, n° 2-5, p. 395-409,
Dureisseix D., Farhat C., “A numerically scalable domain decomposition method for the solution
of frictionless contact problems”, International Journal for Numerical Methods in
Engineering, vol. 50, n° 12, p. 2643-2666, 2001.
Farhat C., Roux F.-X., “A method of finite element tearing and interconnecting and its parallel
solution algorithm”, International Journal for Numerical Methods in Engineering, vol. 32,
n° 6, p. 1205-1227, 1991.
Glocker C., Pfeiffer F., “Multiple impacts with friction in rigid multibody systems.”, Nonlinear
Dynamics, Transactions of A.S.M.E., vol. 7, n° 4, p. 471-497, 1995.
Haslinger J., Dostál Z., Kucera R., “On a splitting type algorithm for the numerical realization
of contact problems with Coulomb friction”, Computer Methods in Applied Mechanics and
Engineering, vol. 191, n° 21-22, p. 2261-2281, 2002.
Jean M., “The non-smooth contact dynamics method”, Computer Methods in Applied Mechanics
and Engineering, vol. 177, p. 235-257, 1999.
Ladevèze P., Nonlinear computational structural mechanics — New approaches and nonincremental
methods of calculation, Springer Verlag, 1999.
Ladevèze P., Nouy A., Loiseau O., “A multiscale computational approach for contact problems”,
Computer Methods in Applied Mechanics and Engineering, vol. 191, p. 4869-4891,
Liu C., Zhao Z., Brogliato B., “Frictionless multiple impacts in multibody systems. I. Theoretical
framework”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Science, vol. 464, n° 2100, p. 3193-3211, 2008.
Liu C., Zhao Z., Brogliato B., “Frictionless multiple impacts in multibody systems. II. Numerical
algorithm and simulation results”, Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Science, vol. 465, n° 2101, p. 1-23, 2009.
Mandel J., “Balancing domain decomposition”, Communications in Applied Numerical Methods,
vol. 9, p. 233-241, 1993.
May H.-O., “The conjugate gradient method for unilateral problems”, Computers and Structures,
vol. 12, n° 4, p. 595-598, 1986.
Mobasher Amini A., Dureisseix D., Cartraud P., “Multi-scale domain decomposition method for
large scale structural analysis with a zooming technique: Application to plate assembly”,
International Journal for Numerical Methods in Engineering, vol. 79, n° 4, p. 417-443,
Moreau J. J., “Numerical aspects of sweeping process”, Computer Methods in Applied Mechanics
and Engineering, vol. 177, p. 329-349, 1999.
Nedderman R., Statics and kinematics of granular materials, Cambridge university Press, Cambridge,
Nineb S., Alart P., Dureisseix D., “Domain decomposition approach for nonsmooth discrete
problems, example of a tensegrity structure”, Computers and Structures, vol. 85, n° 9,
p. 499-511, 2007.
Radjai F., Wolf D. E., Jean M., Moreau J. J., “Bimodal character of stress transmission in
granular packings”, Physical Review Letters, vol. 80, n° 1, p. 61-64, 1998.
Rebel G., Farhat C., Lesoinne M., Avery P., “A scalable Dual-Primal domain decomposition
method for the solution of contact problems with friction”, 7th U.S. National Congress on
Computational Mechanics — USNCCM7, 2003.
Renouf M., Alart P., “Conjugate gradient type algorithms for frictional multi-contact problems:
Applications to granular materials”, Computer Methods in Applied Mechanics and Engineering,
vol. 194, p. 2019-2041, 2004.