Consistent tangent matrices of curved contact operators involving anisotropic friction
Keywords:
unilateral contact, friction, mixed formulation, Newton method, finite contact elementAbstract
Contact problems involving friction are difficult to solve because they are governed by multivalued tribological laws. Using a mixed penalty-duality formulation, a generalized Newton method has proved to be efficient. In order to introduce new nonlinearities like anisotropic friction and curvature of the contact surface, appropriate tangent matrices have to be derived. The additional terms are discussed and algorithms are proposed when analytical expressions are not available. Two numerical tests are presented to show the performance of the generalized Newton method.
Downloads
References
[AGO 93] AGOUZAL A., Analyse numerique de methodes de decomposition de domaines,
methodes des domaines fictifs avec multiplicateurs de Lagrange, Universite de Pau et
des Pays de l' Adour, PhD Thesis, France, 1993.
[ALA 91] ALART P., CURNIER A., "A mixed formulation for frictional contact problems
prone to Newton like solution methods", Comp. Meth. in Appl. Mec. & Eng., 92, 3,
-375, 1991.
[ALA 92] ALART P., "A simple contact algorithm applied to large sliding and anisotropic
friction", Proc. Contact Mechanics International Symposium, (A.Curnier ed.),
Presses Polytechniques Romandes, Lausanne, 1992.
[ALA 93] ALART P., "Criteres d'injectivite et de surjectivite pour certaines applications de
Rn dans lui-meme : application a Ia mecanique du contact", RAIRO Modelisation
Mathematique et Analyse Numerique, 27, 2, 203-222, 1993.
[CAO 89 ] CAO H.L., TEODOSIU C., "Finite element calculation of springback effects and
residual stresses after 2D deep drawing", Proc. 2nd Int. Conf on Computational
plasticity, (Owen-Hinton-Onate ed.), Barcelona, 1989.
[CAP 79] CAPUZZO DoLCETTA I., Mosco U., "Implicit complementarity problems and
quasi-variational inequalities", Variational Inequalities and Complementarity
Problems, Wiley, New York, 75-88, 1979.
[CUR 87] CURNIER A., TACT: A contact analysis program, Proceedings of 3rd meeting
on Unilateral Problems in Structural Analysis, (Del Piero-Maceri ed.), SpringerVerlag,
Wien, New-York,l987.
[CUR 88] CURNIER A., ALART P.A., "Generalized Newton Method for Contact Problems
with Friction", Journal de Mecanique Theorique et Appliquee, Special Issue :
Numerical Method in Mechanics of Contact Involving Friction, 67-82, 1988.
[FOR 76] FORTIN M., "Minimization of some non-differentiable functionals by
augmented Lagrangian method of Hestenes and Powell", Appl. Math. Opt., 2, 4,
[FOR 82] FORTIN M. GLOWINSKI, Methodes de Lagrangien augmente, Collection Methodes
Mathematiques de I'Informatique, Dunod, Paris, 236-250, 1982.
[HE 93] HE Q.C., CURNIER A., "Anisotropic dry friction between two orthotropic surface
undergoing large displacements", Eur. 1. of Mech. A/Solid, 12, 5, 631-666, 1993.
[HEE 92a] HEEGE A., ALART P., "On an implicit contact-friction algorithm dedicated to 30
sheet forming simulation", Proceedings of NUMIFORM 92, Valbonne, Balkema,
Rotterdam, 479-484, 1992.
[HEE 92b] HEEGE A., Simulation numerique 3D du contact avec frottement et application a
Ia mise en forme, lnstitut National Polytechnique de Grenoble, Ph]) Thesis, Grenoble,
[HEE 93] HEEGARD J.C., CURNIER A., "An augmented Lagrangian method for discrete large
slip problems", Int. J. Num. Meth. Eng., 36, 569-593, 1993.
[HEE 95] HEEGE A., ALART P., "A frictional contact element for strongly curved contact
problems", submitted to Int. J. Num. Meth. Eng.
[MOR 79] MOREAU J.J., "Application of convex analysis to some problems of dry
friction", Trends of Pure Mathematics Applied to Mechanics, (Zorski ed.), Pittman
Publishing Ltd, London, 263-280, 1979.
[RAK 91] RAKOTOMANANA R.L., CURNIER A., LEYRAZ P.F., "An objective anisotropic
clastic plastic model and algorithm applicable to bone mechanics", Eur. J. of Meclz.
A/Solid, 10, 3, 327-342, 1991.
[KOC 76] ROCKAFELLAR R.T., "Augmented Lagrangians and applications of the proximal
point algorithm in convex programming", Math. Oper. Res., 1, 2, 97-116, 1976.
[SIM 85] SIMO J.C. & TAYLOR R.L., "Consistent tangent operator for rate-independent
elastoplasticity", Comp. Metlz. in Appl. Mec. & Eng., 48, 101-118, 1985.