A new reduced basis method for non-linear problems

Authors

  • Ali Imazatèn L.P.M.M., URA CNRS 1215, 1.S.G.M.P., Université de Metz, ile du Saulcy, 57045 Metz cedex 01
  • Jean Marc Cado L.P.M.M., URA CNRS 1215, 1.S.G.M.P., Université de Metz, ile du Saulcy, 57045 Metz cedex 01
  • Hamid Zahrouni L.P.M.M., URA CNRS 1215, 1.S.G.M.P., Université de Metz, ile du Saulcy, 57045 Metz cedex 01
  • Michel Potier-Ferry L.P.M.M., URA CNRS 1215, 1.S.G.M.P., Université de Metz, ile du Saulcy, 57045 Metz cedex 01

Keywords:

Asymptotic Numerical Methods, perturbation technique, reduced basis technique, non-linear elasticity, thin shells, Padé Approximants

Abstract

An alternative reduced basis technique is proposed to solve a large class of non-linear problems. The basic idea is to reduce the linear problems obtained by perturbation technique and not the initial non-linear problem. The numerical efficiency of the new method is discussed in details and it tums out to be very attractive for large scale problems. A detailed analysis of classical reduced basis algorithms is also presented.

Downloads

Download data is not yet available.

References

[AEH 98] ELHAGE HUSSEIN A., DAM!L N., POTIER-FERRY M., An asymptotic numerical

algorithm for frictionless contact problems, Revue Européenne des Eléments Finis, vol. 7,

p. 119-130, 1998.

[AEH 00] ELHAGE HUSSEIN A., POTIER FERRY M., DAMIL N., A numerical continuation

method based on Padé approximants, to appear in International Journal of Solids and

Structures, 2000.

[ALM 78] ALMROTH B. 0., BROGAN F. A., STERN P., Automatic choice of global shape

functions in structural analysis, AIAA J., vol. 16, p. 525-528, 1978.

[AZR 92] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., An asymptoticnumerical

method to compute bifurcating branches, New Advances in Computational Structural

Mechanics,Elsevier, Amsterdam, p. 117-131, 1992.

[BAT 90] BATOZ J. L., DHATT G ., Modélisation des structures par Éléments Finis, Hermes,

vol. 3, 1990.

[BES 74] BESSELING J.F., Nonlinear analysis of structures by the finite element oef'hod as a

supplement to a linear analysis, Computer Methods in Applied Mechanics and Engineering,

vol. 3, p. 173-194, 1978.

[BRA 97] BRAIKAT B., DAMIL N., POTIER-FERRY M., Méthode Asymptotique-Numérique

pour la plasticité, Revue Européenne des Éléments Finis, vol. 6, p. 337-357, 1997.

[BRU 99] BRUNELOT J., Simulation de la mise en forme à chaud par une Méthode Asymptotique

Numérique, Thèse, Université de Metz, France, 1999.

[CAD 00] CADOU J. M., COCHELIN B., DAMIL N., POTIER-FERRY M., Asymptotic Numerical

method for stationary Navier-Stokes equations and with Petrov-Galerkin formulation,

To appear in International Journal ofNumerical Methods in Engineering, 2000.

[CHA 97] CHARI R., Analyse non linéaire des structures en treillis par la méthode des éléments

finis et influence de la procédure d'orthogonalisation et du produit scalaire sur les

approximants de Padé, Thèse, Université Hassan II, Casablanca, Maroc, 1997.

[COC 941] COCHELIN B., A path-following technique via an asymptotic-numerical method,

Computers and structures, vol. 53, p. 1181-1192, 1994.

[COC 942] COCHELIN B., DAMIL N., POTIER-FERRY M., The asymptotic-numerical method:

an efficient perturbation technique for nonlinear structural mechanics, Revue Européenne

des Eléments Finis, vol. 3, p. 281-297, 1994.

[COC 943] COCHELIN B., DAMIL N., POTIER-FERRY M., Asymptotic-Numerical Methods

and Padé approximants for non-linear elastic structures, International Journal of Numerical

Methods and Engineering, vol. 37, p. 1187-1237, 1994.

[GAL 00] GALLIET I., Une version parallèle des méthodes asymptotiques numériques. Applications

à des structures complexes à base d'élastomères., Thèse, Université Marseille Il,

[MOK 99] MOKHTARI R., Methode de résolution itérative pour la M.A.N., Mémoire de DEA,

Université de Metz, 1999.

[NAJ 98] NAJAH A., COCHELIN B., DAMIL N., POTIER-FERRY M., A critical review of

asymptotic numerical methods, Archives of Computational Methods in Engineering, vol.

, p.31-50, 1998.

[NOO 80] NOOR A. K., PETERS J. M., Reduced basis technique for nonlinear analysis of

structures, A/AA Journal, vol. 18, n° 4, p.79-0747R, 1980.

[NOO 81] NooR A. K., Recent advances in reduction methods for nonlinear problems, Computers

and Structures, vol. 13, p.31-44, 1981.

[NOO 83] NOOR A. K., PETERS J. M., Recent advances in reduction methods for instability

analysis of structures, Computers and Structures, vol. 16, p.67-80, 1983.

[RIK 84] RIKS E., Sorne computational aspects of the stability analysis of non-linear structures,

Computers and Structures, vol. 147, p.219-559, 1984.

[REY 96] REY C., Une technique d'accélération de la résolution de problèmes d'élasticité

non linéaire par décomposition de domaines, C. R. Acad. Sei. Paris , vol. T.322, Série lib,

p.601-606, 1996.

[ZAH 98] ZAHROUNI H., POTIER-FERRY M., ELASMAR H., DAMIL N., Asymptotic Numerical

Method for Nonlinear Constitutive Laws, Revue Européenne des Éléments Finis, vol.

, p.841-869, 1998.

Downloads

Published

2001-01-24

How to Cite

Imazatèn, A. ., Cado, J. M. ., Zahrouni, H. ., & Potier-Ferry, M. . (2001). A new reduced basis method for non-linear problems. European Journal of Computational Mechanics, 10(1), 55–76. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2821

Issue

Section

Original Article