HIGH PRESSURE CAPABILITIES OF SLENDER SQUEEZE GAPS OF MAGNETO-RHEOLOGICAL FLUIDS
Keywords:
magneto-rheological fluid (MRF), squeeze mode, segregation effect, load carrying capacity, analytical model, squeeze flow paradoxAbstract
In the last decade ample of academic and industrial research work in the area of magneto-rheological fluids (MRF’s) has been done. Most of the concepts and products developed in this time period (e.g. MRF brakes and clutches) feature a shear mode operation. Hence a majority of the published work is addressing this mode. Nevertheless, the MRF squeeze mode becomes more and more attractive (for damping applications for instance) due to its higher reachable force densities compared to the other modes. In this paper attainable MRF squeeze mode pressures for very small squeeze gaps are experimentally investigated. For squeeze gaps down to few hundredth of a millimetre the mean squeeze pressure reaches nearly 100bar. On the other hand, especially in the squeeze mode, the problem of MRF segregation occurs. In this work three different methods to avoid or to reduce this phenomenon are experimentally tested and discussed. Finally, a simplified analytical relation for the MRF squeeze mode pressure characteristics is presented and compared to experiments. This comparison shows that the analytical model predicts the MRF squeeze pressures with a satisfactory accuracy such that it can be used for dimensioning purposes.
Downloads
References
Benetti, M. and Dragoni, E. 2006. Nonlinear Magnetic
Analysis of Multi-plate Magnetorheological Brakes
and Clutches. Excerpt from the Proc. of the COMSOL
Users Conference.
Ciocanel, C., Molyet K., Yamamoto, H., Vieira, S. L.
and Naganathan, N. G. 2006. Magnetorheological
Fluid Behavior Under Constant Shear Rates and
High Magnetic Fields Over Long Time Periods.
Journal of Engineering Materials and Technology,
Vol. 128, pp. 163-168.
Covey, G. H. and Stanmore, B. R. 1981. Use of the
parallel-plate plastometer for the characterisation of
viscous fluids with a yield stress. Journal of Non-
Newtonian Fluid Mechanics, Vol. 8, pp. 249-260.
Dogruer, U., Gordaninejad, F. and Evrensel, C. A.
A New Magneto-rheological Fluid Damper
for High-mobility Multi-purpose Wheeled Vehicle
(HMMWV). Journal of Intelligent Material Systems
and Structures, Vol. 19, pp. 641-650.
Farjoud, A., Cavey, R., Ahmadian, M. and Namuduri,
C. 2009. Non-dimensional Modeling and
Experimental Evaluation of a MR Squeeze Mode
Rheometer. Proc. of the 11th Conf. on Electrorheological
Fluids and Magnetorheological Suspensions.
Gstöttenbauer, N. 2007. Magneto-Rheological Fluids
in Squeeze Mode. PhD thesis. Univ. Linz, ISBN:
-3-8364-8600-2.
Gstöttenbauer, N., Kainz, A., Manhartsgruber, B.
and Scheidl, R. 2004. Experimental and numerical
investigations of the squeeze mode of magnetorheological fluids. Proc. of the Third European
Conference on Structural Control.
Gstöttenbauer, N., Kainz, A., Manhartsgruber, B.
and Scheidl, R. 2005. Systematic Experimental
studies and Computational Perspectives of the
nonlinear squeeze Mode behaviour of Magneto-
Rheological Fluids. Proc. of the 5th Workshop on
Power Transmission and Motion Control.
Gstöttenbauer, N., Manhartsgruber B. and Scheidl
R. 2006. A Test Rig for an Adaptive Magneto-
Rheological Fluid Bearing and an Analytical Model
of its Load Carrying Capacity. Proc. of the fourth
FPNI – PhD Symposium.
Gstöttenbauer, N., Manhartsgruber, B. and Scheidl,
R. 2007. Vorrichtung zum Lagern einer Druckrolle
für eine vorgegebene Druckbelastung. patent AT
023 B1.
Huang, J., Zhang, J. Q., Yang, Y. and Wei, Y. Q.
Analysis and Design of a cylindrical magneto-
rheological fluid brake. Journal of Materials
Processing Technology, Vol. 129, pp. 559-562.
Jolly, M. R. and Carlson, J. D. 1996. Controllable
Squeeze Film Damping Using Magnetorheological
Fluid. Proc. of the 5th Int. Conf. on new Actuators -
Actuator 96, pp. 333-336.
Karakoc, K., Park, E. J. and Suleman A. 2008. Design
considerations for an automotive magnetorheological
brake. Mechatronics, Vol. 18, pp. 434-
Kavlicoglu, B. M., Gordaninejad, F., Evrensel, C.
A., Cobanoglu, N., Liu, Y. and Fuchs, A. 2002. A
high - torque Magneto-rheological fluid clutch.
Proc. of SPIE Conf. On Smart Materials and Structures.
Kulkarni, P., Ciocanel, C., Vieira, S. L. and Naganathan,
N. 2003. Study of the Behavior of MR Fluids
in Squeeze, Torsional and Valve Mode. Journal of
Intelligent Material Systems and Structures, Vol.
, pp. 99-104.
Lange, U. 2004. Beitrag zur Entwicklung geregelter
magnetorheologischer Dämpfer. PhD thesis. Univ.
Dresden.
Lopez-Lopez, M. T., Zugaldia, A., Gonzalez-
Caballero, F. and Duran, J. D. G. 2006. Sedimentation
and redispersion phenomena in iron-based
magnetorheological fluids. Journal of Rheology,
Vol. 50, No. 4, pp. 543-560.
Mazlan, S. A., Ekreem, N. B. and Olabi, A. G. 2007.
The performance of magnetorheological fluid in
squeeze mode. Smart Materials and Structures,
Vol. 16, pp. 1678-1682.
Mazlan, S. A., Ekreem, N. B. and Olabi, A. G. 2008a.
Apparent stress-strain relationships in experimental
equipment where magnetorheological fluids operate
under compression mode. Journal of Physics D:
Applied Physics, Vol. 41.Mazlan, S. A., Ekreem, N. B. and Olabi, A. G. 2008b.
An investigation of the behaviour of magnetorheological
fluids in compression mode. Journal of
Materials Processing Technology, Vol. 201, pp.
-785.
Park, E. J., Stoikov, D., da Luz, L. F. and Suleman,
A. 2006. A performance evaluation of an automotive
magnetorheological brake design with a sliding
mode Controller. Mechatronics, Vol. 16, pp. 405-
Phillips, R. W. 1969. Engineering Applications of
Fluids with a Variable Yield Stress. PhD thesis.
Uni. of California – Berkeley.
Resch, M. and Scheidl, R. 2008. Oil stiction in hydraulic
valves – an experimental investigation. Proc. of
the Symposium on Fluid Power and Motion Control
FPMC 2008.
Resch, M. and Scheidl, R. 2009. An experimental
investigation of the properties of a magnetorheological
fluid in squeeze mode – the segregation
problem. Proc. of the 11th Scand. Int. Conf. on Fluid
Power SICFP09.
Sassi, S., Cherif, K., Mezghani, L., Thomas, M. and
Kotrane, A. 2005. An innovative magnetorheological
damper for automotive suspension: from design
to experimental characterization. Smart Mater.
Struct., Vol. 14, pp. 811–822.
Stefan, M. J. 1874. Versuche über die scheinbare Adhäsion.
Sitzungsberichte der Mathematisch-Naturwissenschaftlichen
Classe der Kaiserlichen Akademie
der Wissenschaften Wien, Band LXIX, pp. 713-
Tang, X., Wang, X. J., Li, W.H. and Zhang, P. Q.
Testing and Modeling of an MR damper in
the Squeeze Flow Mode. Proc. of the 6th int. Conf.
on Electro-Rheological Fluids, Magneto-Rheological
Suspensions and their Applications.
Zschunke, F. 2005. Aktoren auf Basis des magnetorheologischen
Effekts. PhD thesis. Univ. Erlangen.