Sur une stratégie de calcul multiéchelle pour l’analyse des structures composites
Discrétisation et performances
Keywords:
substructuring, heterogeneous materials, homogenization, LATIN methodAbstract
In order to solve efficiently large scale problems arising from the simulation of heterogeneous structures, described up to the microscale, a multiscale computational strategy strongly related to homogenization techniques has been proposed in [LAD 00]. In this paper, specific tools required to address the case of composite materials are proposed: the use of a third scale and of the periodic media homogenization theory within the areas located far from the boundaries.
Downloads
References
[BEN 78] BENSOUSSAN A., LIONS J.L., PAPANICOLAOU G., Asymptotic analysis for periodic
structures, North Holland, Amsterdam, 1978.
[DUV 76] DUVAUT G., « Matériaux élastiques composites à structure périodique, homogénéisation
», Proceedings of the IUTAM Congress, Delft, 1976.
[FEY 00] FEYEL F., CHABOCHE J.L., « FE2 multiscale approach for modelling the elastoviscoplastic
behaviour of long fiber SiC/Ti composite materials », Computer Methods in
Applied Mechanics and Engineering, vol. 183, 2000, p. 309-330.
[FIS 95] FISH J., BELSKY V., « Multigrid method for periodic heterogeneous Media (Part
,2) », Computer Methods in Applied Mechanics and Engineering, vol. 126, 1995, p. 1-
[FIS 97] FISH J., SHEK K., PANDHEERADI M., SHEPARD M.S., « Computational plasticity
for composite structures based on mathematical homogenization : Theory and practice »,
Computer Methods in Applied Mechanics and Engineering, vol. 148, 1997, p. 53-73.
[GHO 93] GHOSH S., MUKHOPADHYAY S.N., « A material based finite element analysis of
heterogeneous media involving Dirichlet tessellations », Computer Methods in Applied
Mechanics and Engineering, vol. 104, 1993, p. 211-247.
[LAD 96] LADEVÈZE P., Mécanique non-linéaire des structures, Hermès, 1996.
[LAD 99] LADEVÈZE P., DUREISSEIX D., « Une nouvelle stratégie de calcul micro/macro en
mécanique des structures », Comptes-Rendus de l’Académie des Sciences, vol. 327, 1999,
p. 1237-1244.
[LAD 00] LADEVÈZE P., DUREISSEIX D., « A micro-macro approach for parallel computing
of heterogeneous structures », International Journal for Computational Civil and Structural
Engineering, vol. 1, 2000, p. 18-28.
[LAD 01] LADEVÈZE P., LOISEAU O., DUREISSEIX D., « A micro-macro and parallel computational
strategy for highly-heterogeneous structures », International Journal for Numerical
Methods in Engineering, vol. 52(1-2), 2001, p. 121-138.
[LET 94] LE TALLEC P., « Domain decomposition methods in computational mechanics »,
Computational Mechanics Advances, vol. 1, 1994.
[LOI 01] LOISEAU O., « Une stratégie de calcul multiéchelle pour les structures hétérogènes »,
PhD thesis, ENS de Cachan, 2001.
[MAN 96] MANDEL J., BREZINA M., « Balancing Domain Decomposition for Problems with
Large Jumps in Coefficients », Mathematics of Computation, vol. 65, 1996, p. 1387-1401.
[MEG 95] MEGUID S.A., ZHU Z.H., « A novel finite element for treating inhomogeneous
solids », International Journal for Numerical Methods in Engineering, vol. 38, 1995,
p. 1579-1592.
[NAK 84] NAKAMURA S., BENEDICT R., LAKE R.S., « Finite element method for orthotropic
micropolar elasticity », International Journal of Engineering Science, vol. 22, 1984,
p. 319-330.
[RIX 99] RIXEN D., FARHAT C., « A simple and efficient extension of a class of substructure
based preconditioners to heterogeneous structural mechanics problems », International
Journal for Numerical Methods in Engineering, vol. 44, 1999, p. 489-516.
[SAN 80] SANCHEZ-PALENCIA E., « Non homogeneous media and vibration theory », Lectures
Notes in Physics, vol. 127, 1980.
[ZOH 96] ZOHDI T.I., ODEN J.T., RODIN G.J., « Hierarchical modelling of heterogeneous
bodies », Computer Methods in Applied Mechanics and Engineering, vol. 138, 1996,
p. 273-298.