Une approche parallele et multi-echelles en calcul des structures : exemples et performances
Keywords:
domain decomposition, non-incremental approach, multi-levelAbstract
In the structural analysis field, domain decomposition methods for algorithms are well suited to parallel architecture computers. Several approaches rewted with these methods hove been designed; for instance, primal approaches, dual ones or "m ixed" ones, such as the approach used here: unknowns are botlz displacements and efforts to interfaces. A general drawback of these methods is the decrease in convergence when increasing the number of substructures. Using a global mechanism to propagate information amongst all the substructures can avoid this drawback. We propose here to take into account two scales introduced wizen decomposing the structure into substructures and interfaces. The large scale problem is then used to build a global exchange of information and therefore improving performance. Moreover, comparisons with other decomposition . methods, and in particular with several variants of the FETI method, are proposed.
Downloads
References
[BRA 86] BRAMBLE J . H., PASCIAK J . E., SCHATZ A. H., The construction of preconditioners
for elliptic problems by substructuring, I, Math. Camp., vol. 47, n· 175, 1986, p.
-134.
[CHA 971 CHAMPAN EY L., COG NARD J.- Y. , DUREISSEIX 0 ., LAD EVEZE P., Large sca le
applications on parallel computers of a mixed domain decomposition method, Computational
Meclranics, n' 19, 1997, p. 253-263.
[COG 96] COG NARD 1 .• Y., OUREISSEIX 0., LAD EVEZE P., LORONG PH., E~periment ation
d'une approche parallcle en calcul de structures, Revue Europienne des Elements Finis,
vol. 5, n' 2, 1996, p. 197- 220.
[DUF 86] DUFF I. S., Parallel implementation of multifrontal schemes, Parallel Computing,
vol. 3, 1986, p. 192-204.
[OUR 96] DUREISSE IX 0 ., LAD EVEZE P., Parall el and multi-level strategies for structural
analysis, Proceedings of the Second European Conference on Numerical Methods in Engineering,
cd. par Des idcri J .-A., p. 599-604, Wiley, Septembre 1996.
[OUR 97] DUREJ SSEIX D., Une approche mulli-echelles pour des calculs de structures sur
ordinateurs a architecture parallcle, These, ENS de Cachan, Janvier 1997.
[ESC 941 ESCAIG Y., TOUZOT G., VAYSSADE M., Paralleli zation of a multilevel domain
decomposition method, Comp11ting Systems in Engineering, vol. 5, n' 3, 1994, p. 253- 263.
[FAR 91] FARHAT C. , Roux F.- X. , A method of finite element tearing and interconnecting
and its parallel solution algorithm, International Journal for Numerical Met/rods in Engineering,
vol. 32, 1991 , p. 1205- 1227.
[FAR 94a] FAR IIAT C., MANDEL J., Roux F.-X., Optimal convergence properties of the
FETI domain decomposition method, Computer Met/rods in Applied Mechanics and Engi.
nee ring, vol. 11 5, 1994, p. 365-385.
[FAR 94b) FARHAT C., Roux F.-X., Implicit parallel processing in structural mechanics,
Computational Mechanics Advances, cd. par Oden J. Tinsley. North-Holland, Juin 1994.
[GLO 90] GLOW JNSK J R .. LE TALLEC P .. Augmented lagrangian interpretation of the nonoverlapping
Schwarz alternating method, Third International Symposium on Domain Decomposition
Met/rods for Partial Differential Equations, ed. par han T. F.. Glowinski R.,
Pcri aux J., Widlund 0 . B .. p. 224-23 1. Phil adelphia. 1990.
[HA 8 1] HA KBUSH W., TROTTENBERG U., Multigrid methods, Springer Verl ag, 19!1 1,
Lecture Notes in Mathematics, volume 960.
(LAD 85] LADEVEZE J ., Algorithmes adaptcs aux calcu ls vectoriel et parallele pour des methodes
de decomposition de domaines, Actes du J• colloque Tendances Actuelles en Cal cui
de Slmctures, ect. par Grellier 1. P., Cam pel G. M., p. 893-907, Bas ti a, Novcmbre 1985.
[LAD 92) LADEV EZE P., LORONG PH ., A large time increment approach with domain decomposition
technique for mechanical non linear problems, Compw. Metlrs. Appl. Sc. Engng.,
ed. par Glowinski R., INRI A, p. 569- 578, New York, 1992.
[LAD 96) LAD EVEZE P., Mecanique non-lini aire des structures- Nouvelle approche el methodes
de calculnon incrementales, Paris, Hermes, 1996.
[Le 94) LE TALLEC P., Domain decomposition methods in computational mechanics, Comp11tational
Mechanics Advances, North-Holland, 1994.
[LIO 90] LIONS P.-L., On the Schwarz altern ating method III : a variant for nonoverlapping
subdomai ns, Third International Symposium on Domain Decomposition Metlrodsfor Partial
Differential Equations, ed. par ChanT. F., Glowinski R., Peri aux J ., Widlund 0 . B., p. 202-
, Philadelphia, 1990.
(MAN 93] MANDEL J ., Balancing domain decomposition, Communications in Applied Nu merical
Methods, vol. 9, 1993, p. 233- 24 1.
[NOO 97] NOOR A. K., New computing systems and future high performance computing
environment and their impact on structural ana lysis and design, Computers & Strucfllres,
vol. 64, n' 1-4, 1997, p. 1- 30.
[PAR 90] PARSONS I. D., HALL J. F., The multigrid method in solid mechanics: pan (algorithm
description and behaviour, International Journal for Numerical Methods in Engineering,
vol. 29, 1990, p. 719- 737.
[SMI91] SMITH B. F., A domain decomposition algorithm for elliptic problems in three
dimensions, Num. Math., vol. 60, 1991, p. 219- 234.
[VER 88] VERPEAUX P., CHARRAS T., MILLARD A., CASTEM 2000 : une approche modeme
du ca lcul des structures, Calcul des Structures et lmelligence Artificielle, ed. par Fouct
J.-M ., LadevczeP., Ohayon R., p. 26 1- 27 1, Pluralis, 1988.
[YAG 93) YAGAWA G., YOSH IOKA A., YOSH IMURA S., SONEDA N., A parallel finite clement
method with a supercomputer network, Complllers & Struclllres, vol. 47, 1993, p.
-418.
[ZIE 83) ZIENKIEWICZ 0 . C., DES. R. GAGO J . P., KELLY D. W., The hierarchical concept
in finite element analysis, Computers & Structures, vol. 16, n' 1-4, 1983, p. 53- 65.