An asymptotic numerical algorithm for frictionless contact problems

Authors

  • Ahmad Elhage Hussein l.Aboratoire de Physique et Mecanique des Materiaux, URA CNRS 1215 lnstitut Superieur de Genie mecanique et Productique, Universite de Metz Jle du Saulcy, F-57045 Metz cedex OJ
  • Noureddine Damil l.Aboratoire de Calcul Scientifique en Mecanique Faculte des Sciences Ben M'Sik, Universite Hassan II Sidi Othman, Casablanca, Maroc
  • Michel Potier-Ferry l.Aboratoire de Physique et Mecanique des Materiaux, URA CNRS 1215 lnstitut Superieur de Genie mecanique et Productique, Universite de Metz Jle du Saulcy, F-57045 Metz cedex OJ

Keywords:

asymptotic numerical method, contact, elastic structures, perturbation technique, Pade approximants

Abstract

Perturbation techniques have been successfully developed to solve problems in non-linear structural mechanics. Based on asymptotic expansions, these techniques lead to analytic representation of the solution branches. In elasticity, when solving contact problems, two non-linearities can occur due to contact constraints and to geometry. The aim of this paper is to propose an asymptotic numerical method for frictionless contact problems. Three examples of 2-D contact problems will be studied to establish the efficiency of our algorithm.

 

Downloads

Download data is not yet available.

References

(ABA 94] Hmnrrr, I

Hibbitt, Karlsson and Sorens n Inc., V rsion 5.4 .

(BAK 96] BAKER G.A., RAVES-MORRIS P. (1996). Pade approximants, Encyclopedia

of Math matics and its Applications, second clition , ambridge Universi ty Press,

ambridge.

(CO 94-1) OCfiELIN B., DAMIL N. and POTIER-FERRY M. (1994). The asy mptoticnum

rica) method : an fficient pertubation technique for non-linear structw·al

mechanics, Revue Europeenne des Elements Finis, 3(2) :281-297.

94-2) OCHELIN B., DAMIL N. and POTIER-FERRY M. (1994) . Asymptotic

numerical methods and Pade approx.imants for non-linear elastic structures, International

Journal for Numerical Methods in Engin ering, 37:1187-12l3.

[ELH 98] ELHAGE HusSEIN A. (1998). Modelisation des problemes de contact par une

Methode Asymptotique Numerique, These: Universite de Metz, France.

[FAR 90] FARIN G. (1990). urves and Surfac s for Computer Aided Geometric

Design, Computer Science and Scientific Computing, second edition.

(FEN 91] FENO Z.Q. (1991) . Contribution a Ia modelisation des problemes non lineaires:

contact, plasticite et endommagement, These: Universite de Teclmologie

de Compiegne, France.

[I

methode des elements finis dans un cadre grandes deformations elastoplastiques,

These: &ole Nationale superieure des Arts et Metiers, France.

(KIK 88] KIKUCHI N., and ODEN J.T. (1988). Contact Problems in Elasticity: A Study

of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia.

(NAJ 98) NAJAH A., CoCHELIN B., 0AMIL N. and POTIER-FERRY M. (1998). A critical

review of Asymptotic Numerical Methods, to appear: Archives of Computational

Methods in Engineering, Vol. 5, 1, 3-22.

Downloads

Published

1998-02-17

How to Cite

Hussein, A. E. ., Damil, N. ., & Potier-Ferry, M. . (1998). An asymptotic numerical algorithm for frictionless contact problems. European Journal of Computational Mechanics, 7(1-3), 119–130. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3391

Issue

Section

Original Article

Most read articles by the same author(s)

<< < 1 2