A temperature adaptive piston design for swash plate type axial piston machines
DOI:
https://doi.org/10.1080/14399776.2016.1213115Keywords:
Axial piston machine, piston/cylinder interface, thermal deformation, energy dissipation in fluid filmAbstract
The authors propose a temperature adaptive piston design for axial piston machines of swash plate type. The proposed piston helps to keep the film thickness between piston and cylinder close to optimal with respect to energy dissipation while operating temperature can changein a wide range. The authors utilize the thermal deformation of piston and cylinder, which varies with temperature, to design the interface that adapt the gap height to compensate the change of the fluid viscosity with the temperature. An in-house developed fluid-structure and thermal interaction model together with recently developed port and case temperature prediction model are used to analyze the piston/cylinder interface and to predict resulting part temperatures, deformations, the fluid film properties and resulting energy dissipation, friction and leakage of the proposed novel design. The results show a reduction of energy dissipation over a large range of operating temperature for the proposed design compared to the baseline design.
Downloads
References
Gerber, H. 1968. Les elements de calcus des machines
volumetriques a piston axiaux e-t á distribution par
glace. Energie Fluide et Lubrification et Hydraulique
Pneumatiquee et Asservissements (EFL+HPA) No. 4, pp.
–67, No. 9, pp. 53–62, No. 11, pp. 53–56
Ivantysyn, J. and Ivantysynova, M., 1993. Hydrostatische
Pumpen und Motoren [Hydrostatic pumps and motors].
Würzburg: Vogel Buchverlag.
Ivantysynova, M. (at that time Berge, M. 1983. An
investigation of viscous flow in lubricating gaps. (In Slovak).
Dissertation. SVST Bratislava, Czechoslovakia.
Ivantysynova, M., 1985. Temperaturfeld im Schmierspalt
zwischen Kolben und Zylinder einer Axialkolbenmaschine
[Temperature distribution in lubricating gap between
Piston and Cylinder in Axial piston machine].
Maschinenbautechnik, 34, 532–535.
Ivantysynova, M., 2012. The piston cylinder assembly in
piston machines – a long journey of discovery. Proceedings
of 8th IFK International Conference on Fluid Power.
Dresden, Germany: Keynote Lecture, Vol. 3. pp. 307–332.
Ivantysynova, M. and Huang, Ch. 2002. Investigation of
the gap flow in displacement machines considering
the elastohydrodynamic effect. 5th JFPS International
Symposium on Fluid Power. Nara, Japan: The Japan Fluid
Power System Society. pp. 219–229.
Ivantysynova, M. and Lasaar, R. 2004. An investigation into
micro- and macrogeometric design of piston/cylinder
assembly of swash plate machines. International journal of
fluid power, 5 (1), 23–36.
Lasaar, R. 2003. Eine Untersuchung zur mikro-und
makrogeometrischen Gestaltung der Kolben/ Zylinderbaugruppe
von Schrägscheibenmaschinen [An investigation
into Micro- and macrogeometric design of piston/cylinder
assembly of swash plate machines]. Fortschritt-Berichte
VDI Reihe 1 No. 364, Düsseldorf: VDI Verlag Düsseldorf.
Olems, L. 2001. Ein Beitrag zur Bestimmung des
Temperaturverhaltens der Kolben-Zylinder-Baugruppe
von Axialkolbenmaschinen in Schrägscheibenbauweise
[A contribution to the determination of the temperature
behavior of the piston-cylinder interface of swashplate
type axial piston machine]. Fortschritt-Berichte VDI.
Reihe 1 No. 348. Düsseldorf: VDI. ISBN: 3-18-334801-2
Pelosi, M. 2012. An investigation on the fluid-structure
interaction of piston/cylinder interface. Thesis (PhD).
Purdue University.
Pelosi, M. and Ivantysynova, M., 2009. A novel thermal
model for the piston/cylinder interface of piston machines.
Bath ASME symposium on fluid power and motion control
(FPMC2009), Bath. [DSCC2009-2782].
Pelosi, M. and Ivantysynova, M., 2012a. A geometric
multigrid solver for the piston-cylinder interface of axial
piston machines. Tribology transactions, 55 (2), 163–174.
Pelosi, M. and Ivantysynova, M., 2012b. Heat transfer and
thermal elastic deformation analysis on the piston/
cylinder interface of axial piston machines. Transaction of
the ASME, journal of tribology, 134 Oct, 1–15.
Pelosi, M. and Ivantysynova, M., 2013. The impact of axial
piston machines mechanical parts constraint conditions
on the thermo-elastohydrodynamic lubrication analysis
of the fluid film interfaces. International journal of fluid
power, 14 (3), 35–51.
Renius, K.T. 1974. Untersuchung zur Reibung zwischen Kolben
und Zylinder bei Schrägscheiben-Axialkolbenmaschinen
[Investigation of friction between piston and cylinder in
swashplate type axial piston machine]. VDI Forschungsheft
Düsseldorf: VDI Verlag.
Roelands, C.J.A., 1966. Correlational aspects of the viscositytemperature-
pressure relationship of lubricating oils. Druk,
V. R. B., Groingen.
Shang, L. and Ivantysynova, M., 2015. Port and case flow
temperature prediction for axial piston machines.
International Journal of Fluid Power, 16 (1), 35–51.
Van der Kolk, H.J. 1972. Beitrag zur Bestimmung der
Tragfähigkeit des stark verkanteten Gleitlagers Kolben –
Zylinder an Axialkolbenpumpen der Schrägscheibenbauart
[Contribution to the determination of the load carrying
capacity of the strongly tilted piston – cylinder sliding
bearing in swashplate type axial piston machine].
Dissertation. Uni Karlsruhe.
Yamaguchi, A., 1976. Motion of pistons in piston-type
hydraulic machines : 1st. report : theoretical analysis.
Bulletin of JSME, 19 (130), 402–407.