Influence of Air Dissolved in Hydraulic Oil on Cavitation Erosion
DOI:
https://doi.org/10.13052/ijfp1439-9776.2234Keywords:
Cavitation erosion, vapour cavitation, gas cavitation, air-free oil, cavitation in hydraulic pumps and valvesAbstract
This article gives experimentally evidence that cavitation erosion in hydraulic components like valves and pumps is caused by vapour cavitation not gas or pseudo cavitation. In fact, the free air content which is released by vapour and gas cavitation reduces the erosion significantly.
In order to clearly separate the different cavitation types, a test rig with a specially designed reservoir with integrated degassing capability is presented. As flow geometry a valve model with realistic dimensions and under realistic operating conditions was used, which ensures very high transferability of the results to the reality of hydraulic components in practical applications and typical operating conditions.
A total of 4 five-hour long tests are performed and analysed. The quantification of the cavitation erosion is determined by the mass loss of the copper samples. The experimental results show a 4.4–5.1 times higher mass loss in tests with air-free oil compared to tests with air-saturated or oversaturated hydraulic oil.
The experimental fact that air-free hydraulic oil causes significantly more cavitation erosion than normal (saturated) hydraulic oil, and its implications are discussed. The conclusion can be drawn, that further developments of hydraulic components and systems towards the use of air-free oil or increasing power densities will be disproportionately challenged by cavitation erosion.
Downloads
References
S. Osterland und D. Herschel, “Druckflüssigkeiten für Hydraulikanlagen”, in Hydraulik – Fluid-Mechatronik, Berlin, Springer, 2020, p. 49.
Gülich J.F, “Saugverhalten und Kavitation”, in Kreiselpumpen, Berlin, Springer, 2004.
J. Fröhlich, F. Rüdiger und W. Heller, “Kompaktkurs Kavitation”, Dresden, 2015.
P. Bathia, “Der Einfluss der geometrischen Form der Drosselspalte auf das Durchflußverhalten von Drosselventilen”, Dresden, Dissertation Technische Universität Dresden, 1963.
U. Grätz, “Untersuchung zur Ableitung und zum Nachweis eines Kriteriums für Strömungskavitation in hydraulischen Achsen”, Forschungsfonds der Fachgemeinschaft Fluidtechnik im VDMA, Frankfurt a.M., 1994.
D. Will, “Der Einfluss der Öltemperatur auf das Durchflußverhalten von Drosselventilen unter besonderer Berücksichtigung der Kavitation”, Dissertation Technnische Universität Dresden, Dresden, 1968.
U. Iben, A. Morozov, E. Winklhofer und R. Skoda, “Optical investigations of cavitating flow phenomena in micro channels”, in WIMRC 3rd International Cavitation Forum, University of Warwick, UK, 2011.
W. Kleinbreuer, “Untersuchung der Werkstoffzerstörung durch Kavitation in ölhydraulischen Systemen”, Dissertation, RWTH Aachen, Aachen, 1979.
P. Lipphardt, “Untersuchung der Kompressionsvorgänge bei Luft-in-Öl-Dispersionen und deren Wirkung auf das Alterungsverhalten von Druckübertragungsmedien auf Mineralölbasis”, Dissertation RWTH Aachen, Aachen, 1975.
P. Lipphardt, “Untersuchungen über das Lösen und Abscheiden dispergierter Luft in Druckmedien und ihre Wirkung in hydraulischen Kreisen”, Institut für hydraulische und pneumatische Antriebe und Steuerungen der RWTH Aachen, Aachen, 1976.
J. Wu, K. Su and Y. Wang, “Effect of air bubble size on cavitation erosion reduction,” Sci. China Technol., pp. 523–528, 3, 2017.
K. Kim und et al., “Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction”, Springer, Dordrecht, 2014.
J. Auret und et al., “The influence of water air content on cavitation erosion in distilled water”, Tribology International, p. 431, 1993.
A. Sotnikov und A. Livshits, “Effect of the Content of Free Air on Cavitation Erosion”, Hydrotechnical Construction, Vol. 28, No. 12, 1995.
H. Lohrberg und B. Stoffel, “Training Seminar S2 Intelligent maintenance management of pumps – Avoiding cavitation erosion”, Karlsruhe, 2020.
R. Böhm, “Erfassung und hydrodynamische Beeinflussung fortgeschrittener Kavitationszustände und ihrer erosiven Aggressivität”, Technische Univ. Darmstadt, Darmstadt, 1998.
W. Heller, “Hydro-dynamic Effects with Particular Consideration of Water Quality and their Measurement Methods”, Saechsische Landesbibliothek – Staats – und Universitaetsbibliothek Dresden, Dresden, 2006.
Lide und R. David, “CRC Handbook of Chemistry and Physics”, 85th ed., CRC Press, 2004.
F. Rüdiger und S. Helduser, “Untersuchungen zur Schallabstrahlung ölhydraulischer Ventile”, Ölhydraulik und Pneumatik, O+
P Zeitschrift für Fluidtechnik, No. 4 and No. 5, 2004.
L. Müller, F. Rüdiger, J. Weber, M. Schümichen, J. Fröhlich, T. Groß und P. Pelz, “Messverfahren und numerische Modellierung von Kavitation in einem ölhydraulischen Ventil”, Journal of “Ölhydraulik +
Pneumatik”, No. 2/2013, June 2013.
L. Müller, F. Rüdiger, S. Helduser und J. Weber, “Visualisation of Cavitation in Oil Hydraulic Spool Valves”, in 8th International Conference on Fluid Power Transmission and Control (ICFP 2013), Zhejiang University, Hangzhou, China, 2013.
A. Moosavi, S. Osterland, D. Krahl, L. Müller und J. Weber, “Numerical Prediction and Experimental Investigation of Cavitation Erosion of Hydraulic Components Using HFC”, in 12th International Fluid Power Conference (12. IFK), Dresden, 2020.
Hydac Filter Systems GmbH, “Practical Contamination Management”, Sulzbach/Saar. 2009.
W. Lauterborn und C.-D. Ohl, “Cavitation Bubble Dynamics”, in Ultrasonics Sonochemistry 4, 5th Meeting of the European Society of Sonochemistry, 1997.
W. Backé, “Über Kavitationserscheinungen in Querschnittsverengungen von ölhydraulischen Systemen”, Industrieanzeiger, No. 63, 1962.