Analysis and Improvement of the Suction Performance of Axial Piston Pumps in Swash Plate Design

Authors

  • Norman Bügener Technical University Dresden, Institute of Fluid Power (IFD), Helmholtzstraße 7a, 01069 Dresden, Germany.
  • Jan Klecker Technical University Dresden, Institute of Fluid Power (IFD), Helmholtzstraße 7a, 01069 Dresden, Germany
  • Jürgen Weber Technical University Dresden, Institute of Fluid Power (IFD), Helmholtzstraße 7a, 01069 Dresden, Germany.

DOI:

https://doi.org/10.13052/14399776.2014.968436

Keywords:

axial piston pump, viscoelastic, FSI, cavitation, bionic, Helmholtz resonator

Abstract

The article illustrates a systematic investigation of the suction performance of hydrostatic pumps on the example of an axial piston pump in swash plate design. The focus is on pressure losses in the suction duct as well as on losses due to the interaction between the suction flow and the rotating group. The investigations of the suction flow are performed by means of numerical and experimental methods. Also a full cavitation model and a two-way fluid-structure-interaction approach were introduced for the numerical works. The experimental works were used to validate the CFD model. For the improvement of the suction performance two approaches are pursued. The bionic design of the suction duct based on meandering rivers and the suction pressure pulsation reduction by the help of a Helmholtz resonator. As a result of the CFD analysis, regions with the largest total pressure losses were identified. Based on CFD simulation significant improvements of the suction performance were shown due to the two presented measures. By means of the meander shape design the pressure losses reduced by more than 50 % and the pressure ripple was dampened by about 9.5 dB using the integrated Helmholtz resonator.

Downloads

Download data is not yet available.

References

Bormann, A. 2005. Elastomerringe zur Schwingungsberuhigung

in der Rotordynamik – Theorie, Messungen und optimierte

Auslegung. Dissertation. TU Berlin.

Bügener, N. 2014. Analyse und Verbesserung des Ansaugverhaltens

von Axialkolbenpumpen in Schrägscheibenbauweise.

Dissertation. Technische Universität Dresden, Institut

für Fluidtechnik.

Casoli, P., Vacca, A., Franzoni, G. and Berta, G., 2006. Modelling

of fluid properties in hydraulic positive displacement

machines. Simulation Modelling – Practice and Theory,

Vol, 14, 1059–1072.

Findeisen, D., 2006. Ölhydraulik – Handbuch für die hydrostatische

Leistungsübertragung in der Fluidtechnik.

Springer-Verlag.

Goenechea, E. 2007. Mechatronische Systeme zur Pulsationsminderung

hydrostatischer Verdrängereinheiten. Dissertation.

RWTH Aachen.

Idelchik, I.E. 2008. Handbook of Hydraulic Resistance. Jaico

Publishing House. 3. Auflage.

Joukowski, N. 1898. Über den hydraulischen Stoß in Wasserleitungsröhren.

Veröffentlichung der kaiserlichen Akademie

der Wissenschaften. St. Petersburg.

Kiesbauer, J. 1991. Selbstanpassende Pulsationsminderer in hydraulischen

Systemen, Dissertation. Technische Universität

Darmstadt.

Klecker, J. and J.Weber 2013. Simulation einer kavitierenden

und pulsierenden Saugströmung in einem Hydraulikschlauch.

Proceedings of the ANSYS Conference & 31. CADFEM

User’s Meeting, Mannheim.

Kottmann, A. 1992. Druckstoßermittlung in der Wasserversorgung.

Vulkan-Verlag Essen Dissertation. Technische Universität

Darmstadt

Kunze, T. 1995. Experimentelle und analytische Untersuchungen

zur Kavitation bei selbstsaugenden Axialkolbenpumpen.

Dissertation, TU Dresden.

Küppers, E.W.U. 2006. Entwicklung von energie (druckverlust)

optimierten Bogenelementen mit nicht kreisförmigem Querschnitt

nach dem Mäander-Prinzip. Abschlussbericht

AZ 22301, Deutsche Bundesstiftung Umwelt.

Leonhard, A., Rüdiger, F. and Helduser, S. 2004. Flow

Induced Noise in Steering Valves – Analyse and Reduction.

Proceedings of the 4th Int. Fluid Power Conference (IFK),

Dresden, pp. 29–40.

Lifante, C. and Frank, T. 2008. Untersuchung der Druckschwankungen

höherer Ordnung am Hinterschiff unter

Berücksichtigung der Kavitation am Propeller. Otterfing:

Abschlussbericht.

Yang, H.Q., Singhal, A.K. and Megahed, M. 2005. Industrial

two-phase flow CFD – The Full Cavitation Model. Von

Karman Institute for Fluid Dynamics, Lecture Series,

–04.

Rechenberg, I. 1973. Evolutionsstrategie: Optimierung technischer

Systeme nach Prinzipien der biologischen Evolution.

Stuttgart-Bad Cannstatt: Frommann-Holzboog.

Singhal, A. K., Li, H. Y., Athavale, M.M. and Jiang, Y. 2002.

Mathematical Basis and Validation of the Full Cavitation

Model. ASME Journal of Fluids Engineering, 124, 617–624.

Schleihs, C., Viennet, E., Deeken, M., , Ding, H., Y.Xia, Lowry,

S. and Murrenhoff, H. 2014. 3D-CFD simulation of an axial

piston displacement unit. Proceedings of the 9th Int. Fluid

Power Conference (IFK), Aachen, Vol. 3, pp. 332–343.

Wustmann, W. 2010. Experimentelle und numerische Untersuchung

der Strömungsvorgänge in hydrostatischen Verdrängereinheiten

am Beispiel von Außenzahnrad- und

Axialkolbenpumpen. Dissertation. Technische Universität

Dresden, Institut für Fluidtechnik.

Downloads

Published

2018-12-29

How to Cite

Bügener, N., Klecker, J., & Weber, J. (2018). Analysis and Improvement of the Suction Performance of Axial Piston Pumps in Swash Plate Design. International Journal of Fluid Power, 15(3), 153–167. https://doi.org/10.13052/14399776.2014.968436

Issue

Section

Original Article