Analysis and Improvement of the Suction Performance of Axial Piston Pumps in Swash Plate Design
DOI:
https://doi.org/10.13052/14399776.2014.968436Keywords:
axial piston pump, viscoelastic, FSI, cavitation, bionic, Helmholtz resonatorAbstract
The article illustrates a systematic investigation of the suction performance of hydrostatic pumps on the example of an axial piston pump in swash plate design. The focus is on pressure losses in the suction duct as well as on losses due to the interaction between the suction flow and the rotating group. The investigations of the suction flow are performed by means of numerical and experimental methods. Also a full cavitation model and a two-way fluid-structure-interaction approach were introduced for the numerical works. The experimental works were used to validate the CFD model. For the improvement of the suction performance two approaches are pursued. The bionic design of the suction duct based on meandering rivers and the suction pressure pulsation reduction by the help of a Helmholtz resonator. As a result of the CFD analysis, regions with the largest total pressure losses were identified. Based on CFD simulation significant improvements of the suction performance were shown due to the two presented measures. By means of the meander shape design the pressure losses reduced by more than 50 % and the pressure ripple was dampened by about 9.5 dB using the integrated Helmholtz resonator.
Downloads
References
Bormann, A. 2005. Elastomerringe zur Schwingungsberuhigung
in der Rotordynamik – Theorie, Messungen und optimierte
Auslegung. Dissertation. TU Berlin.
Bügener, N. 2014. Analyse und Verbesserung des Ansaugverhaltens
von Axialkolbenpumpen in Schrägscheibenbauweise.
Dissertation. Technische Universität Dresden, Institut
für Fluidtechnik.
Casoli, P., Vacca, A., Franzoni, G. and Berta, G., 2006. Modelling
of fluid properties in hydraulic positive displacement
machines. Simulation Modelling – Practice and Theory,
Vol, 14, 1059–1072.
Findeisen, D., 2006. Ölhydraulik – Handbuch für die hydrostatische
Leistungsübertragung in der Fluidtechnik.
Springer-Verlag.
Goenechea, E. 2007. Mechatronische Systeme zur Pulsationsminderung
hydrostatischer Verdrängereinheiten. Dissertation.
RWTH Aachen.
Idelchik, I.E. 2008. Handbook of Hydraulic Resistance. Jaico
Publishing House. 3. Auflage.
Joukowski, N. 1898. Über den hydraulischen Stoß in Wasserleitungsröhren.
Veröffentlichung der kaiserlichen Akademie
der Wissenschaften. St. Petersburg.
Kiesbauer, J. 1991. Selbstanpassende Pulsationsminderer in hydraulischen
Systemen, Dissertation. Technische Universität
Darmstadt.
Klecker, J. and J.Weber 2013. Simulation einer kavitierenden
und pulsierenden Saugströmung in einem Hydraulikschlauch.
Proceedings of the ANSYS Conference & 31. CADFEM
User’s Meeting, Mannheim.
Kottmann, A. 1992. Druckstoßermittlung in der Wasserversorgung.
Vulkan-Verlag Essen Dissertation. Technische Universität
Darmstadt
Kunze, T. 1995. Experimentelle und analytische Untersuchungen
zur Kavitation bei selbstsaugenden Axialkolbenpumpen.
Dissertation, TU Dresden.
Küppers, E.W.U. 2006. Entwicklung von energie (druckverlust)
optimierten Bogenelementen mit nicht kreisförmigem Querschnitt
nach dem Mäander-Prinzip. Abschlussbericht
AZ 22301, Deutsche Bundesstiftung Umwelt.
Leonhard, A., Rüdiger, F. and Helduser, S. 2004. Flow
Induced Noise in Steering Valves – Analyse and Reduction.
Proceedings of the 4th Int. Fluid Power Conference (IFK),
Dresden, pp. 29–40.
Lifante, C. and Frank, T. 2008. Untersuchung der Druckschwankungen
höherer Ordnung am Hinterschiff unter
Berücksichtigung der Kavitation am Propeller. Otterfing:
Abschlussbericht.
Yang, H.Q., Singhal, A.K. and Megahed, M. 2005. Industrial
two-phase flow CFD – The Full Cavitation Model. Von
Karman Institute for Fluid Dynamics, Lecture Series,
–04.
Rechenberg, I. 1973. Evolutionsstrategie: Optimierung technischer
Systeme nach Prinzipien der biologischen Evolution.
Stuttgart-Bad Cannstatt: Frommann-Holzboog.
Singhal, A. K., Li, H. Y., Athavale, M.M. and Jiang, Y. 2002.
Mathematical Basis and Validation of the Full Cavitation
Model. ASME Journal of Fluids Engineering, 124, 617–624.
Schleihs, C., Viennet, E., Deeken, M., , Ding, H., Y.Xia, Lowry,
S. and Murrenhoff, H. 2014. 3D-CFD simulation of an axial
piston displacement unit. Proceedings of the 9th Int. Fluid
Power Conference (IFK), Aachen, Vol. 3, pp. 332–343.
Wustmann, W. 2010. Experimentelle und numerische Untersuchung
der Strömungsvorgänge in hydrostatischen Verdrängereinheiten
am Beispiel von Außenzahnrad- und
Axialkolbenpumpen. Dissertation. Technische Universität
Dresden, Institut für Fluidtechnik.