State-of-the-Art of Artificial Intelligence
DOI:
https://doi.org/10.13052/jmm1550-4646.171322Keywords:
Turing machine, Turing test, Artificial Intelligence, Big Data, expert systems, machine learning, deep learning, Gartner Hype CycleAbstract
Artificial Intelligence (AI) as a technology has existed for less than a century. In spite of this, it has managed to achieve great strides. The rapid progress made in this field has aroused the curiosity of many technologists around the globe and many companies across various domains are curious to explore its potential. For a field that has achieved so much in such a short duration, it is imperative that people who aim to work in Artificial Intelligence, study its origins, recent developments, and future possibilities of expansion to gain a better insight into the field. This paper encapsulates the notable progress made in Artificial Intelligence starting from its conceptualization to its current state and future possibilities, in various fields. It covers concepts like a Turing machine, Turing test, historical developments in Artificial Intelligence, expert systems, big data, robotics, current developments in Artificial Intelligence across various fields, and future possibilities of exploration.
Downloads
References
Beavers A. (2013). Alan Turing: Mathematical Mechanist. In Alan Turing: His Work and Impact. Cooper B. S., van Leeuwen J. (eds.). Waltham: Elsevier. pp. 481. ISBN 978-0-12-386980-7.
Turing A.M. (1937). On Computable Numbers, with an Application to the Entscheidungsproblem. In Proceedings of the London Mathematical Society. s2-42(1): pp. 230. doi: 10.1112/plms/s2-42.1.230.
Minsky 1967:107 “In his 1936 paper, A. M. Turing defined the class of abstract machines that now bear his name. A Turing machine is a finite-state machine associated with a special kind of environment – its tape – in which it can store (and later recover) sequences of symbols”, also Stone 1972:8 where the word “machine” is in quotation marks.
French Robert (2000). The Turing Test: The first 50 years. In Trends in Congnitive Sciences. 4(3). pp. 115. doi: 10.1016/S1364-6613(00)01453-4
Turing A.M. (1950). I.—Computing Machinery and Intelligence. In Mind. LIX(236). pp. 433.
The Turing Test, 1950. turing.org.uk. The Alan Turing Internet Scrapbook.
Russel S. J., Norvig P., et al (1995). Artificial Intelligence: Introduction. In Artificial Intelligence: A Modern Approach. Prentice-Hall, Inc. pp: 5. ISBN 0-13-103805-2.
Smith, G. W. (2015). Art and Artificial Intelligence. ArtEnt. Archived from the original on 25 June 2017.
Feigenbaum E. A. (2003). Some challenges and grand challenges for computational intelligence. In Journal of the ACM. 50 (1). pp. 32. doi:10.1145/602382.602400.
McCorduck P. (2004). The Following Quarter-Century of Artificial Intelligence. In Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence (2nd ed.), A. K. Peters, Ltd. pp. 503. ISBN 1-56881-205-1.
Brand S. (1988). The Founding Image and the Connecting Idea. In The media lab: inventing the future at MIT. Penguin Books. pp. 152. ISBN 978-0-14-009701-6
Available at https://aisb.org.uk/aisb-events/
Available at https://web.archive.org/web/20170914152327/http://www.loebner.net/Prizef/loebner-prize.html
Russel S. J., Norvig P., et al. (1995). Artificial Intelligence: The gestation of artificial intelligence (1943-1956). In Artificial Intelligence: A Modern Approach. Prentice-Hall, Inc. pp: 16. ISBN 0-13-103805-2.
Shannon C. E. (1950). Programming a Computer for Playing Chess. In Philosophical Magazine. 741(314). pp. 256
Russel S. J., Norvig P., et al (1995).Game Playing: Introduction: Games as search problems. In Artificial Intelligence: A Modern Approach. Prentice-Hall, Inc. pp: 144. ISBN 0-13-103805-2.
Available at http://billwall.phpwebhosting.com/articles/computer_early_chess.htm
Moor, J. (2006). The Dartmouth College Artificial Intelligence Conference: The Next Fifty Years. In AI Magazine. 27(4). pp. 87. doi:10.1609/aimag.v27i4.1911
Solomonoff R.J. (1985). The time scale of artificial intelligence: Reflections on social effects. In Human Systems Management. 5(2). pp. 149. doi:10.3233/HSM-1985-5207
Russel S. J., Norvig P., et al (1995). Artificial Intelligence: Early enthusiasm, great expectations (1952–1969). In Artificial Intelligence: A Modern Approach. Prentice-Hall, Inc. pp: 17. ISBN 0-13-103805-2.
Durkin J. (2002). History and Applications: Fall and rebirth of artificial intelligence (1970s). In Expert systems: the technology of knowledge management and decision making for the 21st century. Leondes C.T. (eds). Academic Press. pp. 10. ISBN 978-0-12-443880-4.
Tan H. (2017). A brief history and technical review of the expert system research. In IOP Conference Series: Materials Science and Engineering. 242. doi:10.1088/1757-899X/242/1/012111
Russel S. J., Norvig P., et al (1995). Knowledge-based systems: The key to power? (1969-1979). In Artificial Intelligence: A Modern Approach. Prentice-Hall, Inc. pp: 22. ISBN 0-13-103805-2.
Copeland B. J. (2019). DENDRAL. In Encyclopaedia Britannica, inc. Available at https://www.britannica.com/technology/DENDRAL
Feigenbaum, E. A., Buchanan, B. G., Lederberg, J (1971). On generality and problem solving: A case study involving the DENDRAL program. In Machine Intelligence 6, B. Meltzer and D. Michie (eds.). New York: American Elsevier. pp. 165.
Zwass V. (2016). Expert system. In Encyclopaedia Britannica, inc. Available at https://www.britannica.com/technology/expert-system
Mirjankar N., Ghatnatti S. (2016). Prominence of Expert System and Case Study – DENDRAL. International Journal Of Advanced Networking and Applications. pp. 247. ISSN: 0975-0282
Buchanan B. G., Shortliffe E. H. (eds.) (1984). Rule based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison Wesley. pp. 4. ISBN 0-201-10172-6
Miller R. A., Pople Jr H. E., Myers J. D. (1982). Internist-I, an experimental computer-based diagnostic consultant for general internal medicine. In New England Journal of Medicine. 307 (8). pp. 468. doi:10.1056/NEJM198208193070803.
Petrick S. R. (1971). Proceedings of the Second Symposium on Symbolic and Algebraic Manipulation. pp. 23.
McDermott J. (1980). R1: An Expert in the Computer Systems Domain. In Proceedings of the First AAAI Conference on Artificial Intelligence. pp. 269.
Hart P.E., Duda R.O., Einaudi M.T. (1978). PROSPECTOR—A computer-based consultation system for mineral exploration. In Journal of the International Association for Mathematical Geology. 10. pp. 589. doi:10.1007/BF02461988
Woods W. A. (1973). Progress in natural language understanding: an application to lunar geology. In Proceedings of the June 4–8, 1973, national computer conference and exposition (AFIPS ’73). Association for Computing Machinery. pp. 441. doi: 10.1145/1499586.1499695
Available at http://www.symbolics-dks.com/Macsyma-1.htm
Hayes-Roth B. F., Waterman D. A., Lenat D. (1983). In Building Expert Systems. Addison-Wesley. ISBN 978-0-201-10686-2.
Russel S. J., Norvig P., et al (1995). AI becomes an industry (1980-1988). In Artificial Intelligence: A Modern Approach. Prentice-Hall, Inc. pp: 24. ISBN 0-13-103805-2.
Aggarwal, A. (2018), Resurgence of Artificial Intelligence During 1983–2010. Available at www.scryanalytics.com/articles
Manyika, C. B. B. D. (2011) Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute.
Dietrich D., Hiller B. (2012). Big Data Overview. In Data Science & Big Data Analytics. EMC education services, Wiley publications. pp: 3.
Press G. (2016). A Very Short History Of Artificial Intelligence (AI). Available at https://www.forbes.com/sites/gilpress/
Cafolla D., Ceccarelli M. (2016). Experimental Inspiration and Rapid Prototyping of a Novel Humanoid Torso. In Robotics and Mechatronics: Proceedings of the 4th IFToMM International Symposium on Robotics and Mechatronic. Zeghloul S., Laribi M. E., Gazeau J. P. (eds.). pp. 66. ISBN 978-3-319-22368-1.
Koganezawa K., Takanishi A., Sugano S. (1991). Development of Waseda Robot. Ichiro Kato Laboratory, Tokyo.
Available at https://stanfordhealthcare.org/stanford-health-care-now/2014/cyberknife-technology-20th-anniversary.html
Available at https://robonaut.jsc.nasa.gov/R2/pages/iss-mission.html
Available at https://www.nasa.gov/mission_pages/station/main/robonaut.html
Available at https://www.softbankrobotics.com/emea/en/pepper
Available at https://robots.ieee.org/robots/sophia/
Wizu (2018). A Visual History of Chatbots. Available at https://chatbotsmagazine.com
Clelland C. (2017). The Difference between Artificial Intelligence, Machine Learning and Deep Learning. Available at https://medium.com/
Copeland M. (2016). What’s the Difference Between Artificial Intelligence, Machine Learning and Deep Learning. Available at https://blogs.nvidia.com/
Paradzhanyan (2020). Demystifying Deep Learning and Artificial Intelligence. Available at https://thenewstack.io/
Purdy M., Daugherty P. (2016). Why Artificial Intelligence is the future of growth. Available at http://www.accenture.com/futureofAI
Wasylewicz A. T. M., Scheepers-Hoeks A. M. J. W. (2018). Clinical Decision Support Systems. In Fundamentals of Clinical Data Science. Kubben P., Dumontier M., Dekker A. (eds.). Springer. ISBN 1983319997124
Varghese J., Kleine M., Gessner S., Sandmann S., Dugas M. (2018). Effects of computerized decision support system implementations on patient outcomes in inpatient care: a systematic review. In Journal of American Medical Informatics Association (JAMIA). 25(5). pp. 593. doi: 10.1093/jamia/ocx100.
Kawamoto K., Houlihan C. A., Balas A., Lobach D. F. (2005). Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. In BMJ. 330. pp. 765. doi:10.1136/bmj.38398.500764.8F
Castellino R. A. (2005). Computer Aided Detection (CAD): an overview. In Cancer Imaging. 5(1). pp: 17. doi:10.1102/1470-7330.2005.0018
Taylor P., Potts H. W. (2008). Computer aids and human second reading as interventions in screening mammography: two systematic reviews to compare effects on cancer detection and recall rate. In European Journal of Cancer. 44 (6). pp. 798. doi:10.1016/j.ejca.2008.02.016.
(2019) Deep learning for genomics. Nat Genet. 51, 1. doi:10.1038/s41588-018-0328-0
Gadam S. (2018). Artificial Intelligence and Autonomous Vehicles. Available at https://medium.com
Vries E. (2019). In-Car Speech Recognition: The Past, Present and Future. Available at https://www.globalme.net
Available at https://www.autonomousvehicletech.com/articles/1950-artificial-intelligence-enables-smarter-adas
Ribbens W. B. (1998). Diagnostics. In Understanding Automotive Electronics (4th Edition). Elsevier Science, Newnes Publication. pp. 354. ISBN 0-7506-7008-8.
Buchanan B. G. (2019). Artificial Intelligence in Finance. The Alan Turing Institute. doi:10.5281/zenodo.2612537
Decision Intelligence. Mastercard. Available at https://globalrisk.mastercard.com/online_resource
Morgan B. (2018). Using AI for Customer Experience at Allstate. Available at https://www.forbes.com/sites/blakemorgan
https://promo.bankofamerica.com/erica/
Aldridge, I (2013). Introduction. In High-Frequency Trading: A Practical Guide to Algorithmic Strategies and Trading Systems, 2nd edition. Wiley. ISBN 978-1-118-34350-0.
Barbu-Kleitsch O. (2014). Advertising, Microtargeting and Social Media. In Procedia - Social and Behavioral Sciences. 163. pp. 44. doi:10.1016/j.sbspro.2014.12.284
Papakyriakopoulos O., Hegelich S., Shahrezaye M., Serrano J. C. M. (2018). Social media and microtargeting: Political data processing and the consequences for Germany. In Big Data & Society. doi:10.1177/2053951718811844
Korolova A. (2010). Privacy Violations Using Microtargeted Ads: A Case Study. In Conference: ICDMW 2010, The 10th IEEE International Conference on Data Mining Workshops, Sydney, Australia. doi:10.1109/ICDMW.2010.137
Slyusar V. (2019). Artificial intelligence as the basis of future control networks. doi:10.13140/RG.2.2.30247.50087
Tomayko J. E. (2003). The Story of Self-Repairing Flight Control Systems. Gelzer C. (eds.). NASA Dryden.
Schweikhard K. A., Richards W. L., et al. Flight Demonstration Of X-33 Vehicle Health Management System Components On The F/A-18 Systems Research Aircraft. Available at https://ntrs.nasa.gov/
The future of food and agriculture – Alternative pathways to 2050 (Summary version) (2018). Rome. FAO .pp. 31. Licence: CC BY-NC-SA 3.0 IGO.
Sennaar K. (2019). AI in Agriculture – Present Applications and Impact. Emerj. Available at https://emerj.com/ai-sector-overviews/ai-agriculture-present-applications-impact/
The Future of AI in Agriculture. Intel. Available at https://www.intel.com/content/www/us/en/big-data/article/agriculture-harvests-big-data.html
Dharmaraj V., Vijayanand C. (2018), Artificial Intelligence (AI) in Agriculture. In International Journal of Current Microbiology and Applied Sciences. 7(12). pp. 2122. doi: 10.20546/ijcmas.2018.712.241
Artificial Intelligence in Agriculture. Mindtree. Available at https://www.mindtree.com/
Kietzmann, J., Lee, L. W., McCarthy, I. P., Kietzmann, T. C. (2020). Deepfakes: Trick or treat?. Business Horizons. 63 (2). pp. 135. doi:10.1016/j.bushor.2019.11.006.
Afchar D., Nozick V., Yamagishi J. and Echizen, I. (2018). MesoNet: a Compact Facial Video Forgery Detection Network. pp. 1. doi: 10.1109/WIFS.2018.8630761
Koopman M., Rodriguez A. M. and Geradts Z. (2018). Detection of Deepfake Video Manipulation.
Clarke Y. D. (2019). H.R.3230 - 116th Congress (2019-2020): Defending Each and Every Person from False Appearances by Keeping Exploitation Subject to Accountability Act of 2019. Available at www.congress.gov.
From Drug R&D To Diagnostics: 90+ Artificial Intelligence Startups In Healthcare (2019). Available at https://www.cbinsights.com/research/
Ribli D., Horváth A., Unger Z., Pollner P., Csabai I. (2018). Detecting and classifying lesions in mammograms with Deep Learning. In Sci Rep. 8, 4165. doi:10.1038/s41598-018-22437-z
Van der Laak J. (2017). Computer-aided Diagnosis: The Tipping Point for Digital Pathology. In Digital Pathology Association.
Agaro E. D. (2018). Artificial Intelligence used in genome analysis studies. The EuroBiotech Journal. 2(2). doi:10.2478/ebtj-2018-0012
Zhao J., Liang B., Chen Q. (2018). The key technology toward the self-driving car. In International Journal of Intelligent Unmanned Systems. 6 (1). pp. 2. doi:10.1108/IJIUS-08-2017-0008.
Baomar H., Bentley P. J. (2016). An Intelligent Autopilot System that learns flight emergency procedures by imitating human pilots. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI). pp. 1. doi:10.1109/SSCI.2016.7849881. ISBN 978-1-5090-4240-1.
Sears A. (2018). The Role Of Artificial Intelligence In The Classroom. eLearning Industry. Available at https://elearningindustry.com/
Hemming S., Elings A., Righini I., et al. (2019). Remote Control of Greenhouse Vegetable Production with Artificial Intelligence—Greenhouse Climate, Irrigation, and Crop Production. In Sensors. 19(8). pp. 1807. doi:10.3390/s19081807
Purdy M., Daugherty P. (2017). How AI boosts industry profits and innovation. Available at http://www.accenture.com/futureofAI
Aggarwal A. (2018). Domains in Which Artificial Intelligence is Rivaling Humans. Available at www.scryanalytics.com/articles
Kurzweil R. (2014). Don’t Fear Artificial Intelligence. Available at https://time.com
Gartner Hype Cycle: Interpreting Technology Hype. Available at https://www.gartner.com/
Goasduff L (2019). Top Trends on the Gartner Hype Cycle for Artificial Intelligence, 2019. Available at https://www.gartner.com/
Heaven D. (2019). Why Deep Learning AIs are so easy to fool. In Nature. 574. pp. 163. doi: 10.1038/d41586-019-03013-5
Jiawei S., Vargas D. V., Sakurai K. (2017). One Pixel Attack for Fooling Deep Neural Networks. In IEEE Transactions on Evolutionary Computation. pp. 99. doi: 10.1109/TEVC.2019.2890858
Povolny S., Trivedi S. (2020). Model Hacking ADAS to Pave Safer Roads for Autonomous Vehicles. Available at https://www.mcafee.com//blogs/
Sun W., Olfa N., Shafto P. (2018). Iterating Algorithmic Bias in the interactive Machine Learning Process of Information Filtering. In Scipress. pp. 110. doi:10.5220/0006938301100118