Buckling analysis of tape springs using a rod model with flexible cross-sections

Authors

  • Stéphane Bourgeois Laboratoire de Mécanique et d’Acoustique – UPR CNRS 7051, 31 chemin Joseph-Aiguier, F-13402 Marseille Cedex 20, France; and Ecole Centrale Marseille, Technopôle de Château-Gombert, 38 rue Joliot Curie, F-13451 Marseille Cedex 20, France
  • Bruno Cochelin Laboratoire de Mécanique et d’Acoustique – UPR CNRS 7051, 31 chemin Joseph-Aiguier, F-13402 Marseille Cedex 20, France; and Ecole Centrale Marseille, Technopôle de Château-Gombert, 38 rue Joliot Curie, F-13451 Marseille Cedex 20, France
  • François Guinot Thales Alenia Space, 100 bd du midi – B.P. 99, F-06156 Cannes La Bocca Cedex, France
  • Elia Picault Laboratoire de Mécanique et d’Acoustique – UPR CNRS 7051, 31 chemin Joseph-Aiguier, F-13402 Marseille Cedex 20, France

DOI:

https://doi.org/10.13052/17797179.2012.714848

Keywords:

tape springs, folding, buckling, rod model

Abstract

This work is devoted to the study of tape springs behaviour. We focus on the instabilities that lead to the creation of localised folds, due to the flattening of the cross-section. Depending on the kind of loading, the folds can move along the tape, split or disappear. Using an extended four parameters rod model with flexible cross-sections, we study several modes of instabilities (number and localisation of folds) for such structures submitted to an overall compression or bending.

Downloads

Download data is not yet available.

References

Bazant, Z.P., & Cedolin, L. (1991). Stability of structures: Elastic, inelastic, fracture, and damage theories.

New York, NY: Oxford University Press.

Comsol (2008). Comsol Multiphysics User’s Guide, Comsol AB, Stockholm, http://www.comsol.com.

Gonçalves, R., Ritto-Corrêa, M., & Camotim, D. (2010). A large displacement and finite rotation thinwalled

beam formulation including cross-section deformation. Computer Methods in Applied

Mechanics and Engineering, 199(23–24), 1627–1643.

Guinot, F., Bourgeois, S., Cochelin, B., & Blanchard, L. (2012). A planar rod model with flexible thinwalled

cross-sections: Application to the folding of tape springs. International Journal of Solids and

Structures, 49(1), 73–86.

Hoffait, S., Bruls, O., Granville, D., Cugnon, F., & Kerschen, G. (2009). Dynamic analysis of the selflocking

phenomenon in tape-spring hinges. Acta Astronautica, 66(7–8), 1125–1132.

Nguyen, Q.S. (2000). Stability and nonlinear solid mechanics. Chichester: Willey.

Pimenta, P., & Campello, E. (2003). A fully nonlinear multi-parameter rod model incorporating general

cross-sectional in-plane changes and out-of-plane warping. Latin American Journal of Solids and

Structures, 1(1), 119.

Santer, M., & Pellegrino, S. (2008). Compliant multistable structural elements. International Journal of

Solids and Structures, 45(24), 6190–6204.

Seffen, K. (2001). On the behavior of folded tape-springs. Journal of Applied Mechanics – Transactions

of the ASME, 68(3), 369–375.

Seffen, K., & Pellegrino, S. (1999). Deployment dynamics of tape springs. Proceedings of the Royal

Society London A, 455, 1003–1048.

Seffen, K., You, Z., & Pellegrino, S. (2000). Folding and deployment of curved tape springs. International

Journal of Mechanical Sciences, 42(10), 2055–2073.

Simo, J., & Vu-Quoc, L. (1991). A geometrically-exact rod model incorporating shear and torsion-warping

deformation. International Journal of Solids and Structures, 27(3), 371–393.

Soykasap, O. (2007). Analysis of tape spring hinges. International Journal of Mechanical Sciences, 49

(7), 853–860.

Timoshenko, S.P., & Gere, J.M. (1961). Theory of elastic stability. New-York, NY: Mc Graw-Hill.

Vlassov, B. (1962). Pièces longues en voiles minces (Long thin-walled beams). Paris: Eyrolles.

Walker, S., & Aglietti, G. (2007). A study of tape spring fold curvature for space deployable structures.

Proceedings of the Institution of Mechanical Engineers Part G – Journal of Aerospace Engineering,

(G3), 313–325.

Zivkovic, M., Kojic, M., Slavkovic, R., & Grujovic, N. (2001). A general beam finite element with

deformable cross-section. Computer Methods in Applied Mechanics and Engineering, 190(20–21),

–2680.

Downloads

Published

2012-06-06

How to Cite

Bourgeois, S., Cochelin, B. ., Guinot, F. ., & Picault, E. . (2012). Buckling analysis of tape springs using a rod model with flexible cross-sections. European Journal of Computational Mechanics, 21(3-6), 184–194. https://doi.org/10.13052/17797179.2012.714848

Issue

Section

Original Article

Most read articles by the same author(s)